精英家教网 > 高中数学 > 题目详情
已知某曲线C的参数方程为,(t为参数,a∈R)点M(5,4)在该曲线上,(1)求常数a;(2)求曲线C的普通方程。
(1)a=1(2)( x-1)2=4y
本试题主要是考查了参数方程与普通方程的转化以及点在曲线上的判定的综合运用。
(1)利用点在曲线上,说明点的坐标满足方程得到参数a的值。
(2)根据已知参数方程,消去参数t,得到其普通方程。
解: (Ⅰ)代入点M得a=1    (Ⅱ)( x-1)2=4y为所求。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系上取两个定点,再取两个动点,且.
(Ⅰ)求直线交点的轨迹的方程;
(Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

(1)求点P的轨迹方程; 
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A,B的坐标分别是,直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)
如图所示,点在圆上,轴,点在射线上,且满足.

(Ⅰ)当点在圆上运动时,求点的轨迹的方程,并根据取值说明轨迹的形状.
(Ⅱ)设轨迹轴正半轴交于点,与轴正半轴交于点,直线与轨迹交于点,点在直线上,满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是双曲线的左右焦点,过F1的直线与左支交于A、B两点,若,则该双曲线的离心率是为(   )
A.            B.        C.        D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点在x轴上,离心率
(1)求椭圆E的方程;
(2)求的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在原点,焦点为F(2, 0)。
(1)求抛物线C的方程;
(2)过的直线交曲线两点,又的中垂线交轴于点
的取值范围。

查看答案和解析>>

同步练习册答案