精英家教网 > 高中数学 > 题目详情
(文科)已知二元一次不等式组
x-y+1≤0
y≤4
x≥0

(1)在图中画出不等式组表示的平面区域.
(2)求所表示的平面区域的面积
(3)若z=2x+y,求z的取值范围.
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.
解答: 解:(1)如图所示阴影部分为不等式组表示的平面区域.其中A(0,1),B(0,4),C(3,4),
(2)∵A(0,1),B(0,4),C(3,4),
∴AB=4-1=3,BC=3-0=3,
则不等式组表示的平面区域的面积为S=
1
2
AB•BC
=
1
2
×3×3=
9
2

(3)令z=0,得直线2x+y=0作出与直线2x+y=0,平行的一组平行线,
可知当直线过A点时Z有最小值,z=2x+y=2×0+1=1,
当直线过C点时z有最小值,z=2x+y=2×3+4=10,
∴z的取值范围[1,10].
点评:本题主要考查线性规划的应用,利用数形结合结合目标函数的几何意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2lnx-x3-ax2-x+1(a∈R)
(1)当a=
1
2
时,求f(x)在(0,1]上的最小值;
(2)若y=f(x)在(0,1]上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2a-1)x-3
(1)当a=1时,求函数f(x)在[-
3
2
,2]上的最值;
(2)若函数f(x)在[-
3
2
,2]上的最大值为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆中心在原点,焦点在x轴上,A、B分别为椭圆的左、右顶点,F为椭圆的右焦点,已知椭圆的离心率e=
3
2
,且
AF
BF
=-1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若存在斜率不为零的直线l与椭圆相交于C、D两点,且使得△ACD的重心在y轴右侧,求直线l在x轴上的截距m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算:2log32-log3
32
9
+10g 
1
3
1
8
-5 log59
(2)解不等式:log2(2x+1)+2>log2(3-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2|x|-3,x∈R
(1)判断f(x)的奇偶性;
(2)画出函数f(x)的图象;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生甲只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.学生甲所在班级共有40人,此次考试选择题得分情况统计表如下:
得分(分)4045505560
百分率15%10%25%40%10%
现采用分层抽样的方法从此班抽取20人的试卷进行选择题质量分析.
(1)应抽取多少张选择题得60分的试卷?
(2)求学生甲得60分的概率;
(3)若学生甲选择题得60分,求他的试卷被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log2
7
48
+log212-
1
2
log242-1
(2)0.027 -
1
3
-(-
1
6
-2+2560.75+(
1
3
-1
0-3-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,
(1)并求出f(x)的单调区间.
(2)在区间[-2,2]上的最大值与最小值
(3)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案