分析 利用两角和差的正弦函数公式化简,使用正弦定理即可得出A,B的关系,得出结论.
解答 解:在△ABC中,∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),
∴(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
即sinAcosB•2b2=cosAsinB•2a2.
所以sinAcosBsin2B=cosAsinBsin2A.
sinBcosB=sinAcosA,即sin2B=sin2A.
∴2A=2B或2A+2B=180°,
∴A=B或A+B=90°,
∴三角形是等腰三角形或直角三角形.
故答案为:等腰或直角三角形.
点评 本题考查了正弦定理,三角函数的恒等变换,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com