精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<1}\\{2-x,1≤x<2}\\{2x-4,2≤x}\end{array}\right.$
(1)求f(0),f(1),f(2),f(5);
(2)作出其图象;
(3)求出其单调区间.

分析 (1)利用分段函数,代入计算,可得f(0),f(1),f(2),f(5);
(2)利用分段函数,作出其图象;
(3)由图象可得其单调区间.

解答 解:(1)∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<1}\\{2-x,1≤x<2}\\{2x-4,2≤x}\end{array}\right.$,
∴f(0)=0,f(1)=1,f(2)=0,f(5)=6;
(2)作出其图象,如图所示

(3)由图象可得,函数的单调增区间为[0,1),(2,+∞);单调减区间为(1,2).

点评 本题考查分段函数,考查函数的图象与单调性,正确作图是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下面几种推理中是演绎推理的是(  )
A.由金、银、铜、铁可导电,猜想:金属都可以导电
B.猜想数列5,7,9,11,…的通项公式为an=2n+3
C.半径为r的圆的面积S=π•r2,则单位圆的面积S=π
D.由正三角形的性质得出正四面体的性质

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=|x•ex|,又g(x)=f2(x)+tf(x)(t∈R),若满足g(x)=-1的x有四个,则t的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.($\frac{{e}^{2}+1}{e}$,+∞)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某电子商务公司对1000名网络购物者2015年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为600.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.滕州市正在积极创建国家森林城市,为加快生态环境建设,每年用于改造生态环境总费用为x亿元,其中用于风景区改造的为y亿元.我市决定制定生态环境改造投资方案,该方案要求同时具备下列两个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若每年改造生态环境的总费用至少1亿元,至多4亿元,请你分析能否采用函数模型y=$\frac{1}{100}$(x3+4x+16)作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的焦点在y轴上,从上焦点看一个短轴上两个顶点的张角为60°,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为(  )
A.5-2$\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.6-3$\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量$\overrightarrow{AB}$与向量$\overrightarrow{a}$=(-3,4)的夹角为π,|$\overrightarrow{AB}$|=10,若点A的坐标是(1,2),则点B的坐标为(7,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:关于实数x的方程4x2-4mx+m2-1=0的一根比1大另一根比1小;命题q:函数f(x)=2x-1-m在区间(2,+∞)上有零点.
(1)命题“p或q”真,“p且q”假,求实数m的取值范围.
(2)当命题P为真时,实数m的取值集合为集合M,若命题:?x∈M,x2-ax+1≤0为真,则求实数a的取值范围.

查看答案和解析>>

同步练习册答案