| A. | [-2,3] | B. | [-2,0] | C. | [1,3] | D. | [0,3] |
分析 由分段函数可得当x=0时,f(0)=a2,由于f(0)是f(x)的最小值,则(-∞,0]为减区间,即有a≥0,则有a2≤x+$\frac{1}{x}$+a+4,x>0恒成立,运用基本不等式,即可得到右边的最小值2+a,解不等式a2≤2+a,即可得到a的取值范围
解答 解:由于f(x)=$\left\{\begin{array}{l}{(x-a)^2},x≤0\\ x+\frac{1}{x}+a+4,x>0\end{array}$,
则当x=0时,f(0)=a2,
由于f(0)是f(x)的最小值,
则(-∞,0]为减区间,即有a≥0,
则有a2≤x+$\frac{1}{x}$+a+4,x>0恒成立,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,当且仅当x=1取最小值2,
则a2≤6+a,解得-2≤a≤3.
综上,a的取值范围为[0,3].
故选:D.
点评 本题考查分段函数的应用:求最值,考查函数的单调性及运用,同时考查基本不等式的应用,是一道中档题,也是易错题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x=2a,a∈A} | B. | {x|x=2a,a∈A} | C. | {x|x=a-1,a∈N} | D. | {x|x=a2,a∈N} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4+5\sqrt{3}}{4}$ | B. | $\frac{8+5\sqrt{3}}{4}$ | C. | 3 | D. | $\frac{4+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com