精英家教网 > 高中数学 > 题目详情
18.已知集合A={0,1,2},若A∩∁ZB=∅(Z是整数集合),则集合B可以为(  )
A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

分析 由题意依次求出各个选项中的B,由补集和交集的运算判断即可.

解答 解:由题意知,集合A={0,1,2},
A、B={x|x=2a,a∈A}={0,2,4},则A∩∁ZB={1}≠∅,A不符合题意;
B、B={x|x=2a,a∈A}={1,4,16},则A∩∁ZB={0,2}≠∅,B不符合题意;
C、B={x|x=a-1,a∈N}={-1,0,1,2,3,…},则A∩∁ZB=∅,C符合题意;
D、B={x|x=a2,a∈N}={0,1,4,9,25,…},则A∩∁ZB={2}≠∅,D不符合题意,
故选C.

点评 本题考查交、并、补集的混合运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.平面直角坐标系xOy中,双曲线C1:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的渐近线与抛物线C2:x2=2px(p>0)交于点O,A,B.若△OAB的垂心为抛物线C2的焦点,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|x-1|,则与y=f(x)相等的函数是(  )
A.g(x)=x-1B.$h(x)=\left\{{\begin{array}{l}{x-1,}&{x>1}\\{1-x,}&{x<1}\end{array}}\right.$
C.$s(x)={(\sqrt{x-1})^2}$D.$t(x)=\sqrt{{{(x-1)}^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=3x+2x-3的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线$y=\frac{1}{4}{x^2}$的焦点坐标是(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)=$\left\{\begin{array}{l}{(x-a)^2},x≤0\\ x+\frac{1}{x}+a+4,x>0\end{array}$,若f(0)是f(x)的最小值,则a的取值范围为(  )
A.[-2,3]B.[-2,0]C.[1,3]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为(  )
A.$\frac{1}{32}$B.$\frac{1}{64}$C.$\frac{3}{64}$D.$\frac{3}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.利用分层抽样的方法在学生总数为800的年级中抽取20名同学,其中女生人数为8人,则该年级男生人数为480.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xoy中,曲线C1过点P(a,1),其参数方程为$\left\{{\begin{array}{l}{x=a+\sqrt{2}t\;\;\;}\\{y=1+\sqrt{2}t\;\;\;\;\;}\end{array}}\right.$(t为参数,a∈R).以O为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)已知曲线C1与曲线C2交于A、B两点,且|PA|=2|PB|,求实数a的值.

查看答案和解析>>

同步练习册答案