6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1¹ýµãP£¨a£¬1£©£¬Æä²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=a+\sqrt{2}t\;\;\;}\\{y=1+\sqrt{2}t\;\;\;\;\;}\end{array}}\right.$£¨tΪ²ÎÊý£¬a¡ÊR£©£®ÒÔOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È+4cos¦È-¦Ñ=0£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC1ÓëÇúÏßC2½»ÓÚA¡¢BÁ½µã£¬ÇÒ|PA|=2|PB|£¬ÇóʵÊýaµÄÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©¸ù¾Ý²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒå¿ÉÖª|PA|=2|t1|£¬|PB|=2|t2|£¬ÀûÓÃ|PA|=2|PB|£¬·ÖÀàÌÖÂÛ£¬ÇóʵÊýaµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÇúÏßC1²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=a+\sqrt{2}t\;\;\;}\\{y=1+\sqrt{2}t\;\;\;\;\;}\end{array}}\right.$£¬¡àÆäÆÕͨ·½³Ìx-y-a+1=0£¬-------£¨2·Ö£©
ÓÉÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È+4cos¦È-¦Ñ=0£¬¡à¦Ñ2cos2¦È+4¦Ñcos¦È-¦Ñ2=0
¡àx2+4x-x2-y2=0£¬¼´ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ìy2=4x£®-------£¨5·Ö£©
£¨¢ò£©ÉèA¡¢BÁ½µãËù¶ÔÓ¦²ÎÊý·Ö±ðΪt1£¬t2£¬Áª½â$\left\{\begin{array}{l}{y^2}=4x\\ x=a+\sqrt{2}t\\ y=1+\sqrt{2}t\end{array}\right.$µÃ$2{t^2}-2\sqrt{2}t+1-4a=0$
ÒªÓÐÁ½¸ö²»Í¬µÄ½»µã£¬Ôò$¡÷={£¨2\sqrt{2}£©^2}-4¡Á2£¨1-4a£©£¾0$£¬¼´a£¾0£¬ÓÉΤ´ï¶¨ÀíÓÐ$\left\{\begin{array}{l}{t_1}+{t_2}=\sqrt{2}\;\\{t_1}•{t_2}=\frac{1-4a}{2}\end{array}\right.$
¸ù¾Ý²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒå¿ÉÖª|PA|=2|t1|£¬|PB|=2|t2|£¬
ÓÖÓÉ|PA|=2|PB|¿ÉµÃ2|t1|=2¡Á2|t2|£¬¼´t1=2t2»òt1=-2t2-------£¨7·Ö£©
¡àµ±t1=2t2ʱ£¬ÓÐt1+t2=3t2=$\sqrt{2}$£¬t1t2=2t22=$\frac{1-4a}{2}$£¬¡àa=$\frac{1}{36}$£¾0£¬·ûºÏÌâÒ⣮-------£¨8·Ö£©
µ±t1=-2t2ʱ£¬ÓÐt1+t2=-t2=$\sqrt{2}$£¬t1t2=-2t22=$\frac{1-4a}{2}$£¬¡àa=$\frac{9}{4}$£¾0£¬·ûºÏÌâÒ⣮-------£¨9·Ö£©
×ÛÉÏËùÊö£¬ÊµÊýaµÄֵΪ$a=\frac{1}{36}$»ò$\frac{9}{4}$£®-------£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²é²ÎÊýµÄ¼¸ºÎÒâÒ壬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={0£¬1£¬2}£¬ÈôA¡É∁ZB=∅£¨ZÊÇÕûÊý¼¯ºÏ£©£¬Ôò¼¯ºÏB¿ÉÒÔΪ£¨¡¡¡¡£©
A£®{x|x=2a£¬a¡ÊA}B£®{x|x=2a£¬a¡ÊA}C£®{x|x=a-1£¬a¡ÊN}D£®{x|x=a2£¬a¡ÊN}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³Ð£ÎªÁ˽âѧÉúѧϰµÄÇé¿ö£¬²ÉÓ÷ֲã³éÑùµÄ·½·¨´Ó¸ßÒ»1000ÈË¡¢¸ß¶þ1200ÈË¡¢¸ßÈýnÈËÖУ¬³éÈ¡81È˽øÐÐÎʾíµ÷²é£®ÒÑÖª¸ß¶þ±»³éÈ¡µÄÈËÊýΪ30£¬ÄÇôn=£¨¡¡¡¡£©
A£®860B£®720C£®1020D£®1040

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÊýÁÐ{an}£¬a1=1£¬${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$£¬Ôòa10µÄֵΪ£¨¡¡¡¡£©
A£®5B£®$\frac{1}{5}$C£®$\frac{11}{2}$D£®$\frac{2}{11}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¶¨ÒåÔÚRÉϵÄżº¯Êýf£¨x£©Âú×ãf£¨2-x£©=f£¨x£©£¬ÇÒµ±x¡Ê[1£¬2]ʱ£¬f£¨x£©=lnx-x+1£¬Èôº¯Êýg£¨x£©=f£¨x£©+mxÓÐ7¸öÁãµã£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨\frac{1-ln2}{8}£¬\frac{1-ln2}{6}£©¡È£¨\frac{ln2-1}{6}£¬\frac{ln2-1}{8}£©$B£®$£¨\frac{ln2-1}{6}£¬\frac{ln2-1}{8}£©$
C£®$£¨\frac{1-ln2}{8}£¬\frac{1-ln2}{6}£©$D£®$£¨\frac{1-ln2}{8}£¬\frac{ln2-1}{6}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©£¬½¹µãµ½×¼ÏߵľàÀëΪ4£¬¹ýµãP£¨1£¬-1£©µÄÖ±Ïß½»Å×ÎïÏßÓÚA£¬BÁ½µã£®
£¨¢ñ£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨¢ò£©Èç¹ûµãPÇ¡ÊÇÏß¶ÎABµÄÖе㣬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯Êý£¬ÓÖÔÚÇø¼ä£¨1£¬2£©ÉÏÊǼõº¯ÊýµÄΪ£¨¡¡¡¡£©
A£®y=log${\;}_{\frac{1}{2}}$|x|B£®y=x${\;}^{\frac{1}{2}}$C£®y=$\frac{{{2^x}+{2^{-x}}}}{2}$D£®y=lg$\frac{2-x}{2+x}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚ¶þÏîʽ£¨x2-$\frac{1}{x}$£©5µÄÕ¹¿ªÊ½ÖУ¬º¬x4µÄÏîµÄϵÊýÊÇa£¬Ôò${¡Ò}_{1}^{a}$x-1dx=ln10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÖ±Ïßl£ºy=kx-3k+2ÓëÇúÏßC£º£¨x-1£©2+£¨y+1£©2=4£¨-1¡Üx¡Ü1£©£¬µ±Ö±ÏßlÓëÇúÏßCÏàÇÐʱ£¬kµÄֵΪ$\frac{5}{12}$£¬µ±Ö±ÏßlÓëÇúÏßCÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬kµÄȡֵ·¶Î§Îª£¨$\frac{1}{2}$£¬$\frac{5}{2}$]¡È{$\frac{5}{12}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸