精英家教网 > 高中数学 > 题目详情
1.定义在R上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为(  )
A.$(\frac{1-ln2}{8},\frac{1-ln2}{6})∪(\frac{ln2-1}{6},\frac{ln2-1}{8})$B.$(\frac{ln2-1}{6},\frac{ln2-1}{8})$
C.$(\frac{1-ln2}{8},\frac{1-ln2}{6})$D.$(\frac{1-ln2}{8},\frac{ln2-1}{6})$

分析 确定函数为偶函数则其周期为T=2,函数在x∈[1,2]为减函数,作出函数的图象,得出当x<0时,要使符合题意则$m∈(\frac{ln2-1}{6},\frac{ln2-1}{8})$,根据偶函数的对称性,当x>0时,要使符合题意则$m∈(\frac{1-ln2}{8},\frac{1-ln2}{6})$.即可得出结论.

解答 解:因为函数f(2-x)=f(x)可得图象关于直线x=1对称,且函数为偶函数则其周期为T=2,
又因为$f'(x)=\frac{1}{x}-1=\frac{1-x}{x}$,当x∈[1,2]时有f'(x)≤0,则函数在x∈[1,2]为减函数,
作出其函数图象如图所示:
    
其中${k_{OA}}=\frac{ln2-1}{6},{k_{OB}}=\frac{ln2-1}{8}$,当x<0时,要使符合题意则$m∈(\frac{ln2-1}{6},\frac{ln2-1}{8})$
根据偶函数的对称性,当x>0时,要使符合题意则$m∈(\frac{1-ln2}{8},\frac{1-ln2}{6})$.
综上所述,实数m的取值范围为$(\frac{1-ln2}{8},\frac{1-ln2}{6})∪(\frac{ln2-1}{6},\frac{ln2-1}{8})$,
故选A.

点评 本题考查函数的奇偶性、单调性,考查数形结合的数学思想,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.抛物线$y=\frac{1}{4}{x^2}$的焦点坐标是(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若${({x-\frac{a}{x^2}})^9}$的二项展开式中含x6项的系数为36,则实数a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学环保社团参照国家环境标准,制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
空气质量指数(0,50](50,100](100,150](150,200](200,250](250,300]
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
该社团将该校区在2016年连续100天的空气质量指数数据作为样本,绘制了如图的频率分布表,将频率视为概率.估算得全年空气质量等级为2级良的天数为73天(全年以365天计算).
空气质量指数频数频率
(0,50]xa
(50,100]yb
(100,150]250.25
(150,200]200.2
(200,250]150.15
(250,300]100.1
(Ⅰ)求x,y,a,b的值;
(Ⅱ)请在答题卡上将频率分布直方图补全(并用铅笔涂黑矩形区域),并估算这100天空气质量指数监测数据的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,集合A={x|y=lgx},集合B=$\left\{{y|y=\sqrt{x}+1}\right\}$,那么A∩(∁UB)=(  )
A.B.(0,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xoy中,曲线C1过点P(a,1),其参数方程为$\left\{{\begin{array}{l}{x=a+\sqrt{2}t\;\;\;}\\{y=1+\sqrt{2}t\;\;\;\;\;}\end{array}}\right.$(t为参数,a∈R).以O为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)已知曲线C1与曲线C2交于A、B两点,且|PA|=2|PB|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正四棱锥的底面边长为4cm,高与侧棱夹角为45°,则其斜高长为$2\sqrt{3}$(cm).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列结论中错误的是(  )
A.若0<α<$\frac{π}{2}$,则sinα<tanα
B.若α是第二象限角,则$\frac{α}{2}$为第一象限或第三象限角
C.若角α的终边过点P(3k,4k)(k≠0),则sinα=$\frac{4}{5}$
D.若扇形的周长为6,半径为2,则其中心角的大小为1弧度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示(单位:cm),则此几何体的表面积是(  )
A.96+16$\sqrt{2}$cm2B.80+16$\sqrt{2}$cm2C.96+32$\sqrt{2}$cm2D.80+32$\sqrt{2}$cm2

查看答案和解析>>

同步练习册答案