精英家教网 > 高中数学 > 题目详情
10.下列结论中错误的是(  )
A.若0<α<$\frac{π}{2}$,则sinα<tanα
B.若α是第二象限角,则$\frac{α}{2}$为第一象限或第三象限角
C.若角α的终边过点P(3k,4k)(k≠0),则sinα=$\frac{4}{5}$
D.若扇形的周长为6,半径为2,则其中心角的大小为1弧度

分析 利用任意角的三角函数的定义,象限角的定义,判断各个选项是否正确,从而得出结论.

解答 解:若0<α<$\frac{π}{2}$,则sinα<tanα=$\frac{sinα}{cosα}$,故A正确;
若α是第二象限角,即α(2kπ,2kπ+π),k∈Z,则$\frac{α}{2}$∈(kπ,kπ+$\frac{π}{2}$),为第一象限或第三象限,故B正确;
若角α的终边过点P(3k,4k)(k≠0),则sinα=$\frac{4k}{\sqrt{{9k}^{2}+1{6k}^{2}}}$=$\frac{4k}{5|k|}$,不一定等于$\frac{4}{5}$,故C不正确;
若扇形的周长为6,半径为2,则弧长=6-2×2=2,其中心角的大小为$\frac{2}{2}$=1弧度,
故选:C.

点评 本题主要考查任意角的三角函数的定义,象限角的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,则a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为(  )
A.$(\frac{1-ln2}{8},\frac{1-ln2}{6})∪(\frac{ln2-1}{6},\frac{ln2-1}{8})$B.$(\frac{ln2-1}{6},\frac{ln2-1}{8})$
C.$(\frac{1-ln2}{8},\frac{1-ln2}{6})$D.$(\frac{1-ln2}{8},\frac{ln2-1}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既是偶函数,又在区间(1,2)上是减函数的为(  )
A.y=log${\;}_{\frac{1}{2}}$|x|B.y=x${\;}^{\frac{1}{2}}$C.y=$\frac{{{2^x}+{2^{-x}}}}{2}$D.y=lg$\frac{2-x}{2+x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在研究函数 f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$的性质时,某同学受两点间距离公式启发,将f(x)变形为f(x)=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,并给出关于函数f(x)以下五个描述:
①函数 f(x)的图象是中心对称图形; 
②函数 f(x)的图象是轴对称图形;
③函数 f(x)在[0,6]上是增函数;
④函数 f(x)没有最大值也没有最小值;
⑤无论m为何实数,关于x的方程 f(x)-m=0都有实数根.
其中描述正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在二项式(x2-$\frac{1}{x}$)5的展开式中,含x4的项的系数是a,则${∫}_{1}^{a}$x-1dx=ln10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知三个数a=0.60.3,b=log0.63,c=lnπ,则a,b,c的大小关系是(  )
A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图:三棱柱ABC-A1B1C1的所有棱长均相等,AA1⊥平面ABC,E为AA1的中点.
(1)求证:平面BC1E⊥平面BCC1B1
(2)求直线BC1与平面BB1A1A所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年浙江普通高校招生学业水平考试数学试卷(解析版) 题型:选择题

在空间中,下列命题正确的是( )

A.经过三个点有且只有一个平面

B.经过一个点和一条直线有且只有一个平面

C.经过一个点且与一条直线平行的平面有且只有一个

D.经过一个点且与一条直线垂直的平面有且只有一个

查看答案和解析>>

同步练习册答案