精英家教网 > 高中数学 > 题目详情
8.若数列{an}的前n项和Sn满足:Sn=2an-2,记bn=log2an
(1)求数列{bn}的通项公式;
(2)数列{cn}满足cn=$\frac{b_n}{a_n}$,它的前n项和为Tn,求Tn
(3)求证:$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{7}{4}$.

分析 (1)利用数列递推关系、等比数列的通项公式即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.
(3)利用“裂项求和”方法与数列的单调性即可得出.

解答 解:(1)当n=1时,S1=2a1-2,解得a1=2
当n≥2时,an=Sn-Sn-1=(2an-2)-(2an-1-2)=2an-2an-1,即an=2an-1
所以数列{an}是以a1=2为首项,公比为2的等比数列,
∴${a_n}=2•{2^{n-1}}={2^n}$,从而bn=log2an=n.
(2)易知${c_n}=\frac{n}{2^n}$,则${T_n}=1×\frac{1}{2}+2×\frac{1}{2^2}+3×\frac{1}{2^3}+…+({n-1})×\frac{1}{{{2^{n-1}}}}+n×\frac{1}{2^n}$①$\frac{1}{2}{T_n}=1×\frac{1}{2^2}+2×\frac{1}{2^3}+…+({n-2})×\frac{1}{{{2^{n-1}}}}+({n-1})×\frac{1}{2^n}+n×\frac{1}{{{2^{n+1}}}}$②
①-②可得:$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{2^n}-n×\frac{1}{{{2^{n+1}}}}=1-\frac{n+2}{{{2^{n+1}}}}$
故${T_n}=2-\frac{n+2}{2^n}$.
(3)证明:当n=1时,$\frac{1}{b_1^2}=1<\frac{7}{4}$;当n=2时,$\frac{1}{b_1^2}+\frac{1}{b_2^2}=1+\frac{1}{4}=\frac{5}{4}<\frac{7}{4}$;
当n>2时,$\frac{1}{b_n^2}=\frac{1}{n^2}<\frac{1}{{n({n-1})}}=\frac{1}{n-1}-\frac{1}{n}$,$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{1}{b_1^2}+\frac{1}{b_2^2}+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n-1}-\frac{1}{n}})=1+\frac{1}{4}+\frac{1}{2}-\frac{1}{n}=\frac{7}{4}-\frac{1}{n}<\frac{7}{4}$,
综合可得:$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{7}{4}$.

点评 本题考查了数列递推关系、“错位相减法”、等比数列的通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知偶函数f(x)的定义域为R,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=3x-1;若关于x的方程$f(x)-{log_m}\frac{1}{x+2}=0$在x∈[0,5]上有4个不相等的实数根,则实数m的取值范围是(  )
A.$(0\;,\;\frac{{\sqrt{7}}}{7})$B.$(\frac{{\sqrt{7}}}{7}\;,\;1)$C.$(\frac{{\sqrt{5}}}{5}\;,\;1)$D.$(\frac{{\sqrt{7}}}{7}\;,\;\frac{{\sqrt{5}}}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数$y=cos(2x-\frac{π}{2})$的图象,可以将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{2}$个单位长度B.向左平移$\frac{π}{4}$个单位长度
C.向右平移$\frac{π}{2}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$,以原点为圆心,双曲线的实半轴为半径长的圆与双曲线的两条渐近线相交于A.B.C.D.四点,四边形ABCD的面积为2b,则双曲线的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)=$\left\{\begin{array}{l}{(x-a)^2},x≤0\\ x+\frac{1}{x}+a+4,x>0\end{array}$,若f(0)是f(x)的最小值,则a的取值范围为(  )
A.[-2,3]B.[-2,0]C.[1,3]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=cos2x的周期是T,将f(x)的图象向右平移$\frac{T}{4}$个单位长度后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线x=$\frac{π}{2}$对称B.在(0,$\frac{π}{4}$)上单调递增,为奇函数
C.在($-\frac{3π}{8}$,$\frac{π}{8}$)上单点递增,为偶函数D.周期为π,图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程是ρ=6cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程化为直角坐标方程(普通方程);
(2)若直线l与曲线C相交于A、B两点,且|AB|=2$\sqrt{7}$,求直线的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数$f(x)=\frac{ax+b}{{{x^2}+1}}$是定义在(-∞,+∞)上的奇函数,且$f(\frac{1}{2})=\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)判断f(x)在区间(-1,1)上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线${x^2}-\frac{y^2}{3}=1$的左,右焦点分别为F1,F2,双曲线的离心率为e,若双曲线上一点P使$\frac{{sin∠P{F_2}{F_1}}}{{sin∠P{F_1}{F_2}}}=e$,则$\overrightarrow{{F_2}P}•\overrightarrow{{F_2}{F_1}}$的值为(  )
A.3B.2C.-3D.-2

查看答案和解析>>

同步练习册答案