精英家教网 > 高中数学 > 题目详情
设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
D
当x<-2时,y=(1-x)f′(x)>0,
得f′(x)>0;
当-2<x<1时,y=(1-x)f′(x)<0,得f′(x)<0;
当1<x<2时,y=(1-x)f′(x)>0,得f′(x)<0;
当x>2时,y=(1-x)f′(x)<0,得f′(x)>0,
∴f(x)在(-∞,-2)上是增函数,在(-2,1)上是减函数,在(1,2)上是减函数,在(2,+∞)上是增函数,
∴函数f(x)有极大值f(-2)和极小值f(2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=1-x,则:
①2是函数f(x)的周期;
②函数f(x)在(1,2)上递减,在(2,3)上递增;
③函数f(x)的最大值是1,最小值是0;
④当x∈(3,4)时,f(x)=x-3.
其中所有正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•重庆)(﹣6≤a≤3)的最大值为(  )
A.9B.C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是(  )
A.y=x2+1
B.y=|x|+1
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的偶函数,且时,,若在区间内,函数恰有1个零点,则实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(  )
A.(-1,1)B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数,若,则实数的取值范围是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+≤2f(1),则a的取值范围是 (  )
A.[1,2]
B.
C.
D.(0,2]

查看答案和解析>>

同步练习册答案