分析 (1)由等差数列{an}的公差为1,且a1,a3,a9成等比数列,可得${a}_{3}^{2}$=a1a9,即$({a}_{1}+2)^{2}$=a1(a1+8),解得a1.再利用等差数列的通项公式及其前n项和公式即可得出.
(2)$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,再利用“裂项求和”与数列的单调性即可得出.
解答 (1)解:∵等差数列{an}的公差为1,且a1,a3,a9成等比数列,
∴${a}_{3}^{2}$=a1a9,∴$({a}_{1}+2)^{2}$=a1(a1+8),解得a1=1.
∴an=1+(n-1)=n,
Sn=$\frac{n(n+1)}{2}$.
(2)证明:$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=2$(1-\frac{1}{n+1})$<2.
∴Tn<2.
点评 本题考查了“裂项求和”、等比数列与等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{e}$ | B. | 1 | C. | e | D. | e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com