精英家教网 > 高中数学 > 题目详情
如图在一个二面角的棱上有两个点A,B,线段AC,BD分别在这个二面角的两个面内,并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2
17
cm,则这个二面角的度数为(  )
A、30°B、60°
C、90°D、120°
考点:二面角的平面角及求法
专题:空间位置关系与距离,空间角
分析:首先利用平行线做出二面角的平面角,进一步利用勾股定理和余弦定理解出二面角平面角的大小,最后确定结果.
解答: 解:在平面α内做BE∥AC,BE=AC,连接DE,CE,
所以四边形ACEB是平行四边形.
由于线段AC,BD分别在这个二面角的两个面内,并且都垂直于棱AB,
所以AB⊥平面BDE.
CE∥AB
CE⊥平面BDE.
所以△CDE是直角三角形.
又AB=4cm,AC=6cm,BD=8cm,CD=2
17
cm,
则:DE=2
13
cm
进一步利用余弦定理:DE2=BE2+BD2-2BE•BDcos∠DBE
解得cos∠DBE=
1
2

所以∠DBE=60°
即二面角的度数为:60°
故选:B
点评:本题考查的知识要点:余弦定理的应用,勾股定理的应用,线面垂直的性质,二面角的应用.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

m
n
是两个单位向量,其夹角为60°,求向量
a
=2
m
+
n
b
=2
n
-3
m
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=f(x)为一次函数,f(0)=5,且函数图象过点(-2,1),则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断错误的是(  )
A、“am2<bm2”是“a<b”的充分不必要条件
B、若f′(x0)=0,则x=x0是函数y=f(x)的极值点
C、函数y=f(x)满足f(x+1)=f(1-x),则其图象关于直线x=1对称
D、定义在R上的函数y=f(x)满足f(x+1)=-f(x),则周期为2

查看答案和解析>>

科目:高中数学 来源: 题型:

某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖品邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,AD⊥DB,其中三棱锥P-BCD的三视图如图所示,且sin∠BDC=
3
5


(I)求证:AD⊥PB;
(Ⅱ)若PA与平面PCD所成角的正弦值为 
12
13
65
,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图,则该几何体是 (  )
A、圆柱B、圆锥C、圆台D、球

查看答案和解析>>

科目:高中数学 来源: 题型:

在10支铅笔中,有8支正品和2支次品,现从中任取1支,则取得次品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是(  )
A、(-∞,4-2
7
)∪(4+2
7
,+∞)
B、(4-2
7
,4+2
7
C、(-
3
4
,-
2
3
D、(-
3
2
,-
4
3

查看答案和解析>>

同步练习册答案