精英家教网 > 高中数学 > 题目详情
9.一元二次方程x2+(2k-1)x+k2=0两个根均大于1的充分必要条件是(  )
A.k<-2B.k<-3C.k<0D.k>2

分析 求充要条件,则推理的各步应是可逆的,△≥0是有实根的充要条件.

解答 解:∵方程x2+(2k-1)x+k2=0的两个根大于1,
∴设方程的两根为x1、x2,使x1、x2都大于1的充要条件是:
$\left\{\begin{array}{l}{△=(2k-1)^{2}-4{k}^{2}≥0}\\{({x}_{1}-1)+({x}_{2}-1)>0}\\{({x}_{1}-1)({x}_{2}-1)>0}\end{array}\right.$,
∵${x}_{1}+{x}_{2}=1-2k,{x}_{1}{x}_{2}={k}^{2}$,

∴由韦达定理,得$\left\{\begin{array}{l}{k≤\frac{1}{4}}\\{-(2k-1)-2>0}\\{{k}^{2}+(2k-1)+1>0}\end{array}\right.$,解得k<-2.
所以所求的充要条件为k<-2.
故选:A.

点评 本题考查满足一元二次方程两个根均大于1的充分必要条件的求法,是中档题,解题时要认真审题,注意一元二次函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某学校从高一学生500人,高二学生400人,高三学生300人,用分层抽样的方法从中抽取一个容量为60的样本,则应抽取高一学生的人数为25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给定命题p:x>4,q:|x-1|>2,则¬p是¬q的必要不充分条件(备注:从充要,充分不必要,必要不充分中选择其一作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b,c均为直线,α,β为平面,下面关于直线与平面关系的命题:
①任意给定一条直线与一个平面α,则平面α内必存在与a垂直的直线;
②a∥β,β内必存在与a相交的直线;
③α∥β,a?α,b?β,必存在与a,b都垂直的直线;
其中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数f(x)的导函数为f'(x),且满足f(3)=1,f(-2)=3,当x≠0时有x•f'(x)>0恒成立,若非负实数a、b满足f(2a+b)≤1,f(-a-2b)≤3,则$\frac{b+2}{a+1}$的取值范围为$[{\frac{4}{5},3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中正确的是(1),(2),(4).
(1)f($\frac{1}{k}$)>$\frac{1}{k}$-1;(2)f($\frac{1}{k-1}$)>$\frac{1}{k-1}$;(3)f($\frac{1}{k-1}$)<$\frac{2-k}{k-1}$;(4)f($\frac{1}{k}$)<f($\frac{1}{k-1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设定义在[-2,2]上的偶函数f(x)在区间[-2,0]上单调递减,若f(1-m)<f(m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知动圆P(P为圆心)经过点N(${\sqrt{3}$,0),并且与M:(x+$\sqrt{3}}$)2+y2=16相切.
(Ⅰ)求点P的轨迹E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{5}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,已知$\vec m$=(sin(x+$\frac{π}{4}$),cosx),$\vec n$=(cos(x+$\frac{π}{4}$),cosx),f(x)=$\vec m$•$\vec n$.
(1)试求f(x)的最小正周期和单调递减区间;
(2)已知a,b,c分别为△ABC三个内角A,B,C的对边,若f($\frac{A}{2}$)=1,a=2,试求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案