精英家教网 > 高中数学 > 题目详情
正项等比数列{an}中,a2=3,a6=243,Sn为等差数列{bn}的前n项和,b1=3,S5=35.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=anbn,求数列{cn}的前n项和为Tn
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
a1q=3
a1q5=243
q>0
,由此得an=3n-1.由此得5×3+
5×4
2
d=35
,由此得bn=3+n-1=n+2.
(Ⅱ)由cn=anbn=(n+2)•3n-1,利用错位相减法能求出数列{cn}的前n项和Tn
解答: 解:(Ⅰ)∵正项等比数列{an}中,a2=3,a6=243,
a1q=3
a1q5=243
q>0
,解得a1=1,q=3,
an=3n-1
∵Sn为等差数列{bn}的前n项和,b1=3,S5=35,
5×3+
5×4
2
d=35
,解得d=1,
∴bn=3+n-1=n+2.
(Ⅱ)∵cn=anbn=(n+2)•3n-1
∴Tn=3•30+4•3+5•32+…+(n+2)•3n-1,①
∴3Tn=3•3+4•32+5•33+…+(n+2)•3n,②
①-②,得:-2Tn=3+3+32+33+…+3n-1-(n+2)•3n
=3+
3(1-3n)
1-3
-(n+2)•3n
=
3
2
-(n+
1
2
)•3n

∴Tn=(
n
2
+
1
4
)•3n-
3
2
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
ax+b
x2+1
是定义在(-∞,+∞)上的奇函数,且f(
1
2
)=
2
5

(1)求实数a,b的值;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有不同的画册5本,不同的集邮册7本,从中各取出一本送给两位同学,每人一本,则在不同的送法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=n+
λ
n
(n∈N*,λ>0)
,若{an}为递增数列,则实数λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,f(a+2)=18,g(x)=3ax-4x+1,
(1)求实数a的值;
(2)若ma=1,求g(m)的值;
(3)求函数g(x)在
-2
0
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2=20的弦AB的中点为P(2,-3),则弦AB所在直线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在坐标平面内,给定向量
b
=(1,2)
,对任意非零向量
a
,其关于
b
变换的向量为
a′
=
a
-(
a
b
)•
b

(1)若
a
=(1,-1)
,求
a′

(2)若
a′
=(1,-1)
,求
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为2x2+3y2=6,则此椭圆的离心率为(  )
A、
1
3
B、
3
3
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+
3
sinxcosx-
1
2

(Ⅰ)求函数f(x)的最大值及取得最大值时x的取值集合;
(Ⅱ)若f(θ+
π
12
)=
1
3
,θ∈(
π
4
π
2
),求sin2θ的值.

查看答案和解析>>

同步练习册答案