【题目】已知函数
,
(1)若对任意
,
且
,都有
,求实数
的取值范围;
(2)在第(1)问求出的实数
的范围内,若存在一个与
有关的负数
,使得对任意
时
恒成立,求
的最小值及相应的
值.
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
的焦点,若点
在抛物线
上,且![]()
求抛物线
的方程;
动直线
与抛物线
相交于
两点,问:在
轴上是否存在定点
其中
,使得向量
与向量
共线
其中
为坐标原点
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=
,AD=2,E,F为线段AB的三等分点,G、H为线段DC的三等分点.将长方形ABCD卷成以AD为母线的圆柱W的半个侧面,AB、CD分别为圆柱W上、下底面的直径.
![]()
(Ⅰ)证明:平面ADHF⊥平面BCHF;
(Ⅱ)若P为DC的中点,求三棱锥H—AGP的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为三次函数,且其图象关于原点对称,当
时,
的极小值为-1,则
(1)函数的解析式
__________;
(2)函数
的单调递增区间为___________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔
(单位:分钟)满足
,经测算,高铁的载客量与发车时间间隔
相关:当
时高铁为满载状态,载客量为
人;当
时,载客量会在满载基础上减少,减少的人数与
成正比,且发车时间间隔为
分钟时的载客量为
人.记发车间隔为
分钟时,高铁载客量为
.
求
的表达式;
若该线路发车时间间隔为
分钟时的净收益
(元),当发车时间间隔为多少时,单位时间的净收益
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=2,a2=4,且当n≥2时,an2=an-1an+1,
;
(1)求数列{an}的通项公式an;
(2)若bn=(2n-1)an,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. 命题“若
,则
”的否命题为:“若
则
”
B. 若
为真命题,
为假命题,则
均为假命题
C. 命题“若
成等比数列,则
”的逆命题为真命题
D. 命题“若
,则
”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前n项和.
(1)求
、
和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com