精英家教网 > 高中数学 > 题目详情
14.列举法写出集合{1,2,3}的非空子集:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.

分析 根据子集的定义,按照子集元素数目由少到多的顺序写成集合{1,2,3}的所有子集即可.

解答 解:集合{1,2,3}的非空子集为{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},
故答案为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}

点评 考查集合子集的概念,注意区分子集与真子集,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点$(\sqrt{2},1)$,直线y=k(x-1)(k≠0)与椭圆C交于不同的两点M、N,MN中点为P,O为坐标原点,直线OP斜率为$-\frac{1}{2k}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右顶点为A,当△AMN得面积为$\frac{\sqrt{10}}{3}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知方程x2+y2-2mx-4y+5m=0的曲线是圆C.
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)与g(x)表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}-1}$与g(x)=$\sqrt{x-1}$•$\sqrt{x+1}$B.f(x)=x与g(x)=$\frac{{x}^{3}+x}{{x}^{2}+1}$
C.y=x与y=($\sqrt{x}$)2D.f(x)=$\sqrt{{x}^{2}}$与g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx+$\frac{1}{x}$-3的极小值点为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A($\sqrt{3},\frac{1}{2}$),离心率e=$\frac{\sqrt{3}}{2}$
(1)求椭圆M的方程;
(2)斜率为$\frac{\sqrt{3}}{6}$的直线l与椭圆M交于B、C两点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动点P到直线l:x=-1的距离等于它到圆C:x2+y2-4x+1=0的切线长(P到切点的距离),记动点P的轨迹为曲线E
(Ⅰ)求曲线E的方程;
(Ⅱ)点Q是直线l上的动点,过圆心C作QC的垂线交曲线E于A,B两点,设AB的中点为D,求$\frac{|QD|}{|AB|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ex+ln(x+1)-ax.
(Ⅰ)当a=2时,证明:函数f(x)在定义域内单调递增;
(Ⅱ)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,E是圆内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.求证:
(1)△DFE∽△EFA;
(2)EF=FG.

查看答案和解析>>

同步练习册答案