精英家教网 > 高中数学 > 题目详情
8.如图,E是圆内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.求证:
(1)△DFE∽△EFA;
(2)EF=FG.

分析 (1)根据相似三角形的判定定理证明△FED∽△FAE;
(2)根据相似三角形的性质定理得到EF2=FD•FA,根据切割线定理得到GF2=FD•FA,等量代换证明结论.

解答 证明:(1)连接EF,
∵EF∥CB,
∴∠BCD=∠FED,又∠BCD=∠BAD,
∴∠BCD=∠FED,又∠EFD=∠EFD,
∴△DFE∽△EFA;
(2)由△DFE∽△EFA,$\frac{EF}{FA}$=$\frac{DF}{EF}$,
∴EF2=FD•FA,
∵FG切圆于G,
∴GF2=FD•FA,
∴EF=FG.

点评 本题考查的是切线的性质、相似三角形的判定和性质,掌握切割线定理、相似三角形的判定定理和性质定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.列举法写出集合{1,2,3}的非空子集:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+(y-3)2=6,直线1:mx-y+1=0
(1)若圆C与直线l相交于A,B两点,求弦AB的中点M的轨迹方程.
(2)若曲线C的切线在两坐标轴上有相等的截距,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,等边三角形DEF内接于△ABC,且DE∥BC.已知AH⊥BC于点H,BC=4,AH=3,求△DEF的边长

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+ax2+9x-a2-7a在x=1处取得极值,则a的值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,动点P到定点F(0,-1)的距离与P到定直线y=-2的距离的比为$\frac{\sqrt{2}}{2}$,动点P的轨迹记为C.
(1)求轨迹C的方程;
(2)若点M在轨迹C上运动,点N在圆E:x2+(y-0.5)2=r2(r>0)上运动,且总有|MN|≥0.5,
求r的取值范围;
(3)过点Q(-$\frac{1}{3}$,0)的动直线l交轨迹C于A、B两点,试问:在此坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是(  )
A.(-∞,-3]B.[3,+∞)C.[-3,3]D.(-∞,-3]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a∈R,若f(x)=(x+$\frac{a}{x}$)ex在区间(0,1)上只有一个极值点,则a的取值范围为(  )
A.a>0B.a≤1C.a>1D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=1nx-ax,其中a为实数.
(1)若a=1,求证:f(x)≤-1恒成立;
(2)若函数f(x)在区间(1,+∞)上任意两点的连线段的斜率都小于4,求实数a的最小值;
(3)若方程f(x)=-$\frac{a-1}{2}$x2有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案