精英家教网 > 高中数学 > 题目详情
17.已知a∈R,若f(x)=(x+$\frac{a}{x}$)ex在区间(0,1)上只有一个极值点,则a的取值范围为(  )
A.a>0B.a≤1C.a>1D.a≤0

分析 求导数,分类讨论,利用极值、函数单调性,即可确定a的取值范围.

解答 解:∵f(x)=(x+$\frac{a}{x}$)ex
∴f′(x)=($\frac{{x}^{3}+{x}^{2}+ax-a}{{x}^{2}}$)ex
设h(x)=x3+x2+ax-a,
∴h′(x)=3x2+2x+a,
a>0,h′(x)>0在(0,1)上恒成立,即函数h(x)在(0,1)上为增函数,
∵h(0)=-a<0,h(1)=2>0,
∴h(x)在(0,1)上有且只有一个零点x0,使得f′(x0)=0,
且在(0,x0)上,f′(x)<0,在(x0,1)上,f′(x)>0,
∴x0为函数f(x)在(0,1)上唯一的极小值点;
a=0时,x∈(0,1),h′(x)=3x2+2x>0成立,函数h(x)在(0,1)上为增函数,
此时h(0)=0,∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值;
a<0时,h(x)=x3+x2+a(x-1),
∵x∈(0,1),∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值.
综上所述,a>0.
故选:A.

点评 本题考查导数知识的综合运用,考查函数的单调性、极值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ex+ln(x+1)-ax.
(Ⅰ)当a=2时,证明:函数f(x)在定义域内单调递增;
(Ⅱ)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,E是圆内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.求证:
(1)△DFE∽△EFA;
(2)EF=FG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求函数y=|x-1|+|x-3|的最小值及对应自变量x的取值;
(2)求函数y=|x-1|+|x-2|+|x-3|的最小值及对应自变量x的取值;
(3)求函数y=|x-1|+|x-2|+|x-3|+…+|x-n|的最小值及对应自变量x的取值;
(4)求函数y=|x-1|+|2x-1|+|3x-1|+|4x-1|+|5x-1|+|6x-1|的最小值及对应自变量x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x>-1,则函数y=$\frac{(x+10)(x+2)}{x+1}$的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:函数f(x)=ex-x-1,g(x)=ax+xcosx+1
(I)求函数f(x)的单调区间;
(Ⅱ)证明:a>-2时,存在x0∈(0,1),使g(x)>$\frac{1}{{e}^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正项等比数列{an}中,a3=$\frac{1}{2}$,S2=3,则公比q的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x,y满足约束条件$\left\{\begin{array}{l}x+y≤10\\ x-y≤2\\ x≥3\end{array}\right.$,那么z=2x-y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知在三棱锥P-ABC中,PA⊥面ABC,PC⊥AB,若三棱锥P-ABC的外接球的半径是3,S=S△ABC+S△ABP+S△ACP,则S的最大值是(  )
A.36B.28C.26D.18

查看答案和解析>>

同步练习册答案