| A. | 三边均不相等的三角形 | B. | 直角三角形 | ||
| C. | 等腰(非等边)三角形 | D. | 等边三角形 |
分析 先根据($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0判断出∠A的角平分线与BC垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C,判断出三角形的形状.
解答 解:∵($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,$\frac{\overrightarrow{AB}}{|AB|}$,$\frac{\overrightarrow{AC}}{|AC|}$分别为单位向量,
∴∠A的角平分线与BC垂直,
∴AB=AC,
∵cosA=$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,
∴∠A=$\frac{π}{3}$,
∴∠B=∠C=∠A=$\frac{π}{3}$,
∴三角形为等边三角形.
故选:D.
点评 本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 支持 | 反对 | 合计 | |
| 教师 | 16 | 14 | 30 |
| 学生 | 44 | 26 | 70 |
| 合计 | 60 | 40 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$+1 | B. | $\sqrt{5}$ | C. | $\frac{1+\sqrt{5}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{31}{16}$ | B. | $\frac{15}{16}$ | C. | $\frac{15}{8}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com