精英家教网 > 高中数学 > 题目详情
19.已知非零向量$\overrightarrow{AB}$,$\overrightarrow{AC}$满足($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,则△ABC的形状是(  )
A.三边均不相等的三角形B.直角三角形
C.等腰(非等边)三角形D.等边三角形

分析 先根据($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0判断出∠A的角平分线与BC垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C,判断出三角形的形状.

解答 解:∵($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,$\frac{\overrightarrow{AB}}{|AB|}$,$\frac{\overrightarrow{AC}}{|AC|}$分别为单位向量,
∴∠A的角平分线与BC垂直,
∴AB=AC,
∵cosA=$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,
∴∠A=$\frac{π}{3}$,
∴∠B=∠C=∠A=$\frac{π}{3}$,
∴三角形为等边三角形.
故选:D.

点评 本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.2016年,我国诸多省市将使用新课标全国卷作为高考用卷,某市一高中(以下简称A校)为了调查该校师生对这一举措的看法,随机抽取了30名教师,70名学生进行调查,得到以下的2×2列联表:
 支持 反对 合计
 教师 1614  30
 学生 4426  70
 合计 6040 100
(1)根据以上数据,能否有90%的把握认为A校师生“支持使用新课标全国卷”与“师生身份”有关?
(2)现将这100名师生按教师、学生身份进行分层抽样,从中抽取10人,试求恰好抽取到持“反对使用新课标全国卷”态度的教师2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.记f(n)=(3n+2)(C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$)(n≥2,n∈N*).
(1)求f(2),f(3),f(4)的值;
(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某重点高中拟把学校打造成新型示范高中,为此规定了很多新的规章制度.新规章制度实施一段时间后,学校就新规章制度的认知程度随机抽取100名学生进行问卷调查,调查卷共有20个问题,每个问题5分,调查结束后,按成绩分成5组;第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],绘制成如图所示的频率分布直方图,已知甲,乙两人同在第3组,丙,丁两人分别在第4,5组,现在用分层抽样的方法在第3,4,5组共选取6人,进行强化培训.
(1)求第3,4,5组分别选取的人数;
(2)求这100人的平均得分(同一组数据用该区间的中点值作代表);
(3)若甲,乙,丙,丁四人都被选取进行强化培训,之后要从这6人随机选取2人再全面考查他们对新规章制度的认知程度,求甲,乙,丙,丁这四人至多有一人被选取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,则△ABC的面积S等于(  )
A.3B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若某公司从四位大学毕业生甲、乙、丙、丁中录用两人,这四人被录用的机会均等,则甲或乙被录用的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.三阶矩阵$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$中有9个不同的数aij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是$\frac{13}{14}$(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,虚轴的一个端点为A,若AF与双曲线C的一条渐近线垂直,则双曲线的离心率为(  )
A.$\sqrt{2}$+1B.$\sqrt{5}$C.$\frac{1+\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是公比大于1的等比数列,若2a1,$\frac{3}{2}$a2,a3成等差数列,则$\frac{{S}_{4}}{{a}_{4}}$=(  )
A.$\frac{31}{16}$B.$\frac{15}{16}$C.$\frac{15}{8}$D.2

查看答案和解析>>

同步练习册答案