精英家教网 > 高中数学 > 题目详情
11.三阶矩阵$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$中有9个不同的数aij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是$\frac{13}{14}$(结果用分数表示)

分析 利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.

解答 解:从9个数中任取3个数共有C93=84种取法,
取出的三个数,使它们不同行且不同列:从第一行中任取一个数有C31=3种方法,
则第二行只能从另外两列中的两个数任取一个有C21=2种方法,
第三行只能从剩下的一列中取即可有1中方法,
∴共有3×2=6种方法三个数分别位于三行或三列的情况有6种;
∴所求的概率为$\frac{84-6}{84}$=$\frac{13}{14}$,
故答案为:$\frac{13}{14}$

点评 本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{5}}}{5}$,直线mx+y+1=1恒过椭圆的一个顶点.
(I)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,P为椭圆的右焦点,过F的直线l(l不与坐标轴垂直)交椭圆于A,B两点,C为AB的中点,D为A关于x轴的对称点.
(i)求证:直线OC与过点F且与l垂直的直线的交点在直线x=$\frac{5}{2}$上;
(ii)在x轴上是否存在定点T,使B、D、T三点共线?若存在,求出T点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在五面体ABCDE中,AD⊥平面ABC,AD∥BE∥CF,△ABC为等边三角形,AB=2$\sqrt{3}$,BE=2,AD=3,CF=4,M为EF的中点.
(Ⅰ)求证:DM∥平面ABC;
(Ⅱ)求直线CD与平面DEF所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow{AB}$,$\overrightarrow{AC}$满足($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,则△ABC的形状是(  )
A.三边均不相等的三角形B.直角三角形
C.等腰(非等边)三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P为双曲线右支上的任意一点,若$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为9a,则双曲线的离心率为(  )
A.2B.5C.3D.2或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某人玩掷骰子移动棋子的游戏,棋盘分为A,B两方,开始时棋子放在A方,根据下列①、②、③的规定移动棋子:①骰子出现1点时,不能移动棋子;②出现2、3、4、5点时,把棋子移向对方;③出现6点时,若棋子在A方就不动,若棋子在B方就移至A方.
(1)将骰子连掷2次,求掷第一次后棋子仍在A方而掷第二次后棋子在B方的概率;
(2)若将骰子连掷3次,3次中棋子移动的次数记为ξ,求随机变量ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校的象棋兴趣班有高一年级10人,高二年级15人,高三年级5人,用分层抽样的方法从这个兴趣班中抽取6人进行集中训练,然后从这6人中随机抽取2人代表学校参加本区内校际高中生象棋大赛,则这2人中恰好有高二、高三各一人的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和为Sn,若a2=4,且Sn=an+1-2.
(Ⅰ)求数列{an}的通项公式:
(Ⅱ)若cn=-20+log2a4n,求{cn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow a$,$\overrightarrow b$为单位向量,|$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{2}$|$\overrightarrow a$-$\overrightarrow b$|,则$\overrightarrow a$在$\overrightarrow a$+$\overrightarrow b$的投影为(  )
A.$\frac{1}{3}$B.-$\frac{{2\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

同步练习册答案