精英家教网 > 高中数学 > 题目详情
20.数列{an}的前n项和为Sn,若a2=4,且Sn=an+1-2.
(Ⅰ)求数列{an}的通项公式:
(Ⅱ)若cn=-20+log2a4n,求{cn}的前n项和Tn的最小值.

分析 (Ⅰ)由已知数列递推式结合a2=4求得数列首项,得到Sn-1=an-2(n≥2),作差后可得数列{an}是首项为2,公比为2的等比数列,则通项公式可求;
(Ⅱ)把数列{an}的通项公式代入cn=-20+log2a4n,分组求和后利用二次函数的最值得答案.

解答 解:(Ⅰ)∵Sn=an+1-2,
∴Sn-1=an-2(n≥2),
则an+1=2an(n≥2),
又a2=4,
∴a1=S1=a2-2=2,即a2=2a1
∴数列{an}是首项为2,公比为2的等比数列,
则${a}_{n}={2}^{n}$;
(Ⅱ)cn=-20+log2a4n =$-20+lo{g}_{2}{2}^{4n}=4n-20$.
∴Tn =$4×(1+2+…+n)-20n=4×\frac{n(n+1)}{2}-20n$=2n2-18n.
∴当n=4或5时,{cn}的前n项和Tn的最小值.
此时T4=T5=-40.

点评 本题考查数列递推式,考查了等比关系的确定,训练了等差数列前n项和的求法,考查二次函数求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.记f(n)=(3n+2)(C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$)(n≥2,n∈N*).
(1)求f(2),f(3),f(4)的值;
(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.三阶矩阵$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$中有9个不同的数aij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是$\frac{13}{14}$(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,虚轴的一个端点为A,若AF与双曲线C的一条渐近线垂直,则双曲线的离心率为(  )
A.$\sqrt{2}$+1B.$\sqrt{5}$C.$\frac{1+\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={0,2,3},B={1,2,3},从A,B中各取一个数,则这两个数之和等于3的概率是(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题“p:?x0∈R,|x0+1|+|x0-2|≤a”是真命题,则实数a的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z满足z(1-i)=1+i,则z的共轭复数$\overline{z}$为(  )
A.iB.-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是公比大于1的等比数列,若2a1,$\frac{3}{2}$a2,a3成等差数列,则$\frac{{S}_{4}}{{a}_{4}}$=(  )
A.$\frac{31}{16}$B.$\frac{15}{16}$C.$\frac{15}{8}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年12月16日到18日第二届世界互联网大会在乌镇举行,17日奇虎360董事长周鸿祎在回答海外网记者的提问时,分享了过去100天中国每天遭受DDOS攻击的次数数据,并根据数据作出频率分布直方图,如图所示
(1)假设数值不超过140的为安全,根据此安全标准,求这100天内安全的天数n;
(2)预计在未来3天中,有2天的数值高于180,另一天低于120的概率.

查看答案和解析>>

同步练习册答案