精英家教网 > 高中数学 > 题目详情
15.已知集合A={0,2,3},B={1,2,3},从A,B中各取一个数,则这两个数之和等于3的概率是(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

分析 列举出所有的基本事件和数值和为3的基本事件,使用古典概型的概率公式计算概率.

解答 解:从集合A,B中各取一个数,共有9个基本事件,分别是(0,1),(0,2),(0,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3).
其中两数之和等于3共有两个基本事件,即(0,3),(2,1),
∴两个数之和等于3的概率为P=$\frac{2}{9}$.
故选A.

点评 本题考查了古典概型的概率计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发10个红包,每个红包金额在[1,5]产生.已知在每轮游戏中所产生的10个红包金额的频率分布直方图如图所示.
(Ⅰ)求a的值,并根据频率分布直方图,估计10个红包金额的中位数;
(Ⅱ)以频率分布直方图中的频率作为概率,若甲抢到来自[2,4)中3个红包,求其中一个红包来自[2,3),另2个红包来自[3,4)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P为双曲线右支上的任意一点,若$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为9a,则双曲线的离心率为(  )
A.2B.5C.3D.2或5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校的象棋兴趣班有高一年级10人,高二年级15人,高三年级5人,用分层抽样的方法从这个兴趣班中抽取6人进行集中训练,然后从这6人中随机抽取2人代表学校参加本区内校际高中生象棋大赛,则这2人中恰好有高二、高三各一人的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知各项均为正数的等比数列{an}中,若a5a9=3,a6a10=9,则a7a8=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和为Sn,若a2=4,且Sn=an+1-2.
(Ⅰ)求数列{an}的通项公式:
(Ⅱ)若cn=-20+log2a4n,求{cn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲、乙两人玩游戏,规则如下:第奇数局,甲赢的概率为$\frac{3}{4}$,第偶数局,乙赢的概率为$\frac{3}{4}$,每一局没有平局,规定:当其中一人赢的局数比另一人赢的局数多2次时游戏结束,则游戏结束时,甲乙两人玩的局数的数学期望为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在某项体能测试中,跑1km时间不超过4min为优秀,某同学跑1km所花费的时间X是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别是F1、F2,点P在其上一点,双曲线的离心率是2,且∠F1PF2=90°,若△F1PF2的面积为3,则双曲线的实轴长为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案