精英家教网 > 高中数学 > 题目详情
4.若某公司从四位大学毕业生甲、乙、丙、丁中录用两人,这四人被录用的机会均等,则甲或乙被录用的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

分析 由已知得甲或乙被录用的对立事件是丙、丁二人都被录用,由此利用对立事件概率计算公式能求出甲或乙被录用的概率.

解答 解:∵某公司从四位大学毕业生甲、乙、丙、丁中录用两人,这四人被录用的机会均等,
甲或乙被录用的对立事件是丙、丁二人都被录用,
∴甲或乙被录用的概率为:
p=1-$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=1-$\frac{1}{6}$=$\frac{5}{6}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.小王创建了一个由他和甲、乙、丙共4人组成的微信群,并向该群发红包,每次发红包的个数为1个(小王自己不抢),假设甲、乙、丙3人每次抢得红包的概率相同.
(Ⅰ)若小王发2次红包,求甲恰有1次抢得红包的概率;
(Ⅱ)若小王发3次红包,其中第1,2次,每次发5元的红包,第3次发10元的红包,记乙抢得所有红包的钱数之和为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.
(1)若直线l的斜率为$\frac{1}{2}$,求$\frac{AP}{AQ}$的值;
(2)若$\overrightarrow{PQ}$=λ$\overrightarrow{AP}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2016年“五一”期间,高速公路某服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽查一辆进行询问调查.共询问调查40名驾驶员.将他们在某段高速公路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),
得到如图所示的频率分布直方图.
(I)求这40辆小型车辆的平均车速(各组数据平均值可用其中间数值代替);
(II)若从车速在[60,70)的车辆中任意抽取2辆,求其中车速在[65,70)的车辆中至少有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow{AB}$,$\overrightarrow{AC}$满足($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,则△ABC的形状是(  )
A.三边均不相等的三角形B.直角三角形
C.等腰(非等边)三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆E1的长半轴长为a1、短半轴长为b1,椭圆E2的长半轴长为a2、短半轴长为b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,则我们称椭圆E1与椭圆E2是相似椭圆.已知椭圆E:$\frac{x^2}{2}$+y2=1,其左顶点为A、右顶点为B.
(1)设椭圆E与椭圆F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似椭圆”,求常数s的值;
(2)设椭圆G:$\frac{x^2}{2}$+y2=λ(0<λ<1),过A作斜率为k1的直线l1与椭圆G仅有一个公共点,过椭圆E的上顶点为D作斜率为k2的直线l2与椭圆G仅有一个公共点,当λ为何值时|k1|+|k2|取得最小值,并求其最小值;
(3)已知椭圆E与椭圆H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似椭圆.椭圆H上异于A、B的任意一点C(x0,y0),求证:△ABC的垂心M在椭圆E上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某人玩掷骰子移动棋子的游戏,棋盘分为A,B两方,开始时棋子放在A方,根据下列①、②、③的规定移动棋子:①骰子出现1点时,不能移动棋子;②出现2、3、4、5点时,把棋子移向对方;③出现6点时,若棋子在A方就不动,若棋子在B方就移至A方.
(1)将骰子连掷2次,求掷第一次后棋子仍在A方而掷第二次后棋子在B方的概率;
(2)若将骰子连掷3次,3次中棋子移动的次数记为ξ,求随机变量ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(-1,1)及圆C:(x-3)2+(y-4)2=1,求过A的圆C的两切线的切点连线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的所对边分别为a,b,c.已知a2+b2+5abcosC=0,sin2C=$\frac{7}{2}$sinAsinB.
(Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面积为$\frac{\sqrt{3}}{2}$,求sinA的值.

查看答案和解析>>

同步练习册答案