精英家教网 > 高中数学 > 题目详情
2.已知a=$\frac{1}{2}$,b=${2^{\frac{1}{2}}}$,c=log32,则(  )
A.b>a>cB.c>b>aC.b>c>aD.a>b>c

分析 利用指数函数、对数函数的单调性求解.

解答 解:∵a=$\frac{1}{2}$,
b=${2^{\frac{1}{2}}}$>20=1,
$\frac{1}{2}=lo{g}_{3}\sqrt{3}$<c=log32<log33=1,
∴b>c>a.
故选:C.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.定义在R上的奇函数f(x)满足f(2)=1,且f(x+2)=f(x)+f(2),求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(2,0),设A,B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,直线AB的斜率为$\frac{3\sqrt{7}}{7}$,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是公差不为零的等差数列,a1=1且a1,a3,a9成等比数列.
(1)求数列{an}的通项;
(2)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知3x=2y=12,则$\frac{1}{x}$+$\frac{2}{y}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,将一个正方体的表面展开,直线AB与直线CD在原来正方体中的位置关系是(  ) 
A.平行B.相交并垂直C.相交且成60°角D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=-cos2x-4t•sin$\frac{x}{2}$cos$\frac{x}{2}$+2t2-6t+2(x∈R),其中t∈R,将f(x)的最小值记为g(t)
 (1)求g(t)的表达式;
(2)当-1<t<1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x-1)=x2-2x,则f(x)=x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,ABCD为菱形,PD⊥平面ABCD,连接AC、BD,交于点F,AC=6,BD=8,E是棱PB上的动点,△AEC面积的最小值是3,连接DE,
(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案