精英家教网 > 高中数学 > 题目详情
已知(1-2x)6=a0+a1x+a2x2+…+a6x6,则|a0|+|a1|+|a2|+…+|a6|=
 
考点:二项式定理的应用
专题:二项式定理
分析:由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,可得|a0|+|a1|+|a2|+…+|a6|=a0-a1+a2-a3+a4-a5+a6,把x=-1代入已知式子计数可得.
解答: 解:∵(1-2x)6=a0+a1x+a2x2+…+a6x6
由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,
∴|a0|+|a1|+|a2|+…+|a6|=a0-a1+a2-a3+a4-a5+a6=(1+2)6=729
故答案为:729
点评:本题考查二项式定理,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
log
1
2
x+1
的定义域为(  )
A、(2,+∞)
B、(0,2)
C、(-∞,2)
D、(0,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第58个数对是(  )
A、(2,10)
B、(3,9)
C、(5,7)
D、(3,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级12名学生某次考试成绩如下表所示:
序号123456789101112
数学成绩958580949265678498718375
物理成绩908372879171588293818663
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀数学成绩不优秀合计
物理成绩优秀
物理成绩不优秀
合计
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?(小数点后三位有效)
友情提示:随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

独立检验随机变量K2的临界值参考表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个顶点是A(-1,4),B(-2,-1),C(2,3).
(Ⅰ)求BC边中线AD所在直线方程;
(Ⅱ)求点A到BC边的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,
3
),单位向量
n
满足
m
n
=-1.
(Ⅰ)求向量
n

(Ⅱ)设向量
p
=(2cos2
θ
2
,cos(
π
3
-θ)),其中θ为锐角,且向量
n
与x轴平行,求|
p
-
n
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xa-
6
x
,且f(6)=5.
(1)求a的值;
(2)证明f(x)的奇偶性;
(3)判断f(x)在(1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1,C1,B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,这个几何体的体积为
40
3

(1)证明:直线A1B∥平面CDD1C1
(2)求棱A1A的长;
(3)在线段BC1上是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系. 已知点A、B的极坐标分别为(1,0)、(1,
π
2
),曲线C的参数方程为
x=rcosα
y=rsinα
(α为参数,r>0).
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.

查看答案和解析>>

同步练习册答案