精英家教网 > 高中数学 > 题目详情
17.设定义在R上的函数$f(x)=\left\{\begin{array}{l}|{lg|{x-1}|}|,x≠1\\ 0,x=1\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是为c=0且b<0.

分析 画出函数f(x)的图象,把关于x的方程f2(x)+bf(x)+c=0有7个不同实数解转化为f(x)有一0根和一正根,可得c=0且b<0.

解答 解:作出函数$f(x)=\left\{\begin{array}{l}|{lg|{x-1}|}|,x≠1\\ 0,x=1\end{array}\right.$的图象如图,
要使方程f2(x)+bf(x)+c=0有7解,
由图可知关于f(x)的方程f2(x)+bf(x)+c=0有一0根和一正根.
应有f(x)=0有3解,
则c=0,b<0,
故答案为:c=0且b<0.

点评 本题考查函数与方程的应用,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow{a•}(\overrightarrow b+\overrightarrow a)=2$,且$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=2sin({ωx+\frac{π}{3}}),({ω<0})$的最小正周期为π,求函数f(x)的单调递增区间和函数取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某同学利用暑假60天到一家商场勤工俭学.该商场向他提供了三种付酬:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍),他应该选择哪种方式领取报酬呢?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{lnx}{x}-1$.
(I)求函数f(x)的单调区间;
(II)设m>0,若函数g(x)=2xf(x)-x2+2x+m在$[{\frac{1}{e},e}]$上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在?ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrow{d}$,则下列等式中不正确的是(  )
A.$\overrightarrow{a}+\overrightarrow{b}$=$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$C.$\overrightarrow{b}$-$\overrightarrow{a}$=$\overrightarrow{d}$D.$\overrightarrow{c}$-$\overrightarrow{d}$=2$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的图象上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求证:{xn+1}是等比数列,并求出数列{xn}的通项公式;
(2)对任意的正整数n,当m∈[-1,1]时,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求实数t的取值范围;
(3)设四边形PnQnQn+1Pn+1的表面积是Sn,求证:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x,y∈R+且xy-(x+y)=1,则(  )
A.$x+y≤2(\sqrt{2}+1)$B.$xy≤\sqrt{2}+1$C.$x+y≤{(\sqrt{2}+1)^2}$D.$xy≥{(\sqrt{2}+1)^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.五面体ABC-DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(Ⅰ)求证:G是DE中点;
(Ⅱ)求二面角A-CE-F的平面角的余弦.

查看答案和解析>>

同步练习册答案