精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的图象上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求证:{xn+1}是等比数列,并求出数列{xn}的通项公式;
(2)对任意的正整数n,当m∈[-1,1]时,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求实数t的取值范围;
(3)设四边形PnQnQn+1Pn+1的表面积是Sn,求证:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

分析 (1)利用已知条件推出xn+1}是首项为3,公比为3的等比数列.然后求解通项公式.
(2)判断数列{yn}单调递减,推出当n=1时,yn取得最大值为$\frac{1}{3}$.不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,转化为:$3{t^2}-6mt+\frac{1}{3}>{({y_n})_{max}}=\frac{1}{3}$,即t2-2mt>0,对任意m∈[-1,1]恒成立,列出不等式求解即可.
(3)推出$|{{P_n}{Q_n}}|=\frac{n}{3^n}$,表示四边形PnQnQn+1Pn+1的面积为${S_n}=\frac{1}{2}({|{{P_{n+1}}{Q_{n+1}}}|+|{{P_n}{Q_n}}|})|{{Q_n}{Q_{n+1}}}|$利用裂项求和求解即可.

解答 (1)解:由xn=3xn-1+2(n≥2且n∈N*)得xn+1=3(xn-1+1)(n≥2且n∈N*
∵x1+1=3,∴xn+1≠0,∴$\frac{{{x_n}+1}}{{{x_{n-1}}+1}}=3$,(n≥2且n∈N*
∴{xn+1}是首项为3,公比为3的等比数列.
∴${x_n}+1=({{x_1}+1}){3^{n-1}}={3^n}$.
∴${x_n}={3^n}-1$,n∈N*
(2)∵${y_n}=f({x_n})=\frac{{{{log}_3}({{3^n}-1+1})}}{{{3^n}-1+1}}=\frac{n}{3^n}$,
∵$\frac{{{y_{n+1}}}}{y_n}=\frac{n+1}{{{3^{n+1}}}}•\frac{3^n}{n}=\frac{n+1}{3n}$,n∈N*,又3n=n+1+2n-1>n+1>1,
∴$\frac{{{y_{n+1}}}}{y_n}<1$故数列{yn}单调递减,(此处也可作差yn+1-yn<0证明数列{yn}单调递减)
∴当n=1时,yn取得最大值为$\frac{1}{3}$.
要使对任意的正整数n,当m∈[-1,1]时,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,
则须使$3{t^2}-6mt+\frac{1}{3}>{({y_n})_{max}}=\frac{1}{3}$,即t2-2mt>0,对任意m∈[-1,1]恒成立,
∴$\left\{\begin{array}{l}{t^2}-2t>0\\{t^2}+2t>0\end{array}\right.$,解得t>2或t<-2,
∴实数t的取值范围为(-∞,-2)∪(2,+∞).
(3)$|{{Q_n}{Q_{n+1}}}|=({{3^{n+1}}-1})-({{3^n}-1})=2•{3^n}$,而$|{{P_n}{Q_n}}|=\frac{n}{3^n}$,
∴四边形PnQnQn+1Pn+1的面积为${S_n}=\frac{1}{2}({|{{P_{n+1}}{Q_{n+1}}}|+|{{P_n}{Q_n}}|})|{{Q_n}{Q_{n+1}}}|$=$\frac{1}{2}({\frac{n+1}{{{3^{n+1}}}}+\frac{n}{3^n}})•2•{3^n}=\frac{4n+1}{3}$$\frac{1}{{n{S_n}}}=\frac{3}{{n({4n+1})}}=\frac{12}{{4n({4n+1})}}=12({\frac{1}{4n}-\frac{1}{4n+1}})<12({\frac{1}{4n}-\frac{1}{4n+4}})=3({\frac{1}{n}-\frac{1}{n+1}})$$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3({1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1}})=3({1-\frac{1}{n+1}})<3$,
∴故$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

点评 本题考查数列的递推关系式的应用,数列是单调性以及数列求和的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设x,y∈R,则“x>0”是“x>-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,若a=2,$C=\frac{π}{4}$,$cos\frac{B}{2}=\frac{{2\sqrt{5}}}{5}$,
(1)求sinA;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设定义在R上的函数$f(x)=\left\{\begin{array}{l}|{lg|{x-1}|}|,x≠1\\ 0,x=1\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是为c=0且b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若二次函数y=f(x)在x=2处取最大值,则(  )
A.f(x-2)一定为奇函数B.f(x-2)一定为偶函数
C.f(x+2)一定为奇函数D.f(x+2)一定为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义域为R的奇函数y=f(x)的导函数为y=f'(x),当x≠0时,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f({\frac{1}{2}}),b=-2f({-2}),c=-ln2f({ln\frac{1}{2}})$,则a,b,c的大小关系正确的是(  )
A.b<c<aB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a=(2,1),\overrightarrow b=(-3,-4),\overrightarrow c⊥(\overrightarrow a-\overrightarrow b)$
(1)求$(2\overrightarrow a+3\overrightarrow b)•(\overrightarrow a-2\overrightarrow b)$;
(2)若向量$\overrightarrow c$为单位向量,求向量$\overrightarrow c$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点,F1,F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,则双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x-ex(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[-1,2],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立,则实数m的取值范围为(  )
A.(-∞,-e]∪[e,+∞﹚B.[-e,e]
C.﹙-∞,-2-$\frac{1}{e}$]∪[-2+$\frac{1}{e}$,+∞﹚D.[-2-$\frac{1}{e}$,-2+$\frac{1}{e}$]

查看答案和解析>>

同步练习册答案