精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x-ex(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[-1,2],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立,则实数m的取值范围为(  )
A.(-∞,-e]∪[e,+∞﹚B.[-e,e]
C.﹙-∞,-2-$\frac{1}{e}$]∪[-2+$\frac{1}{e}$,+∞﹚D.[-2-$\frac{1}{e}$,-2+$\frac{1}{e}$]

分析 利用导数求出函数f(x)在[-1,1]上的值域,再分类求出g(x)在[-1,1]上的值域,把对于任意的x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立转化为两集合值域间的关系求解.

解答 解:由f(x)=x-ex,得f′(x)=1-ex
当x∈[-1,0)时,f′(x)>0,当x∈(0,1]时,f′(x)<0,
∴f(x)在[-1,0)上为增函数,在(0,1]上为减函数,
∵f(-1)=-1-$\frac{1}{e}$,f(0)=-1,f(2)=1-e.
∴f(x)在[-1,1]上的值域为[1-e,-1];
当m>0时,g(x)=mx+1在[-1,1]上为增函数,值域为[1-m,1+m],
要使对于任意的x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立,
则[1-e,-1]⊆[1-m,1+m],
∴$\left\{\begin{array}{l}{1-m≤1-e}\\{1+m≥-1}\end{array}\right.$,解得m≥e;
当m=0时,g(x)的值域为{1},不合题意;
当m<0时,g(x)=mx+1在[-1,1]上为减函数,值域为[1+m,1-m],
对于任意的x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立,
则[1-e,-1]⊆[1+m,1-m],
∴$\left\{\begin{array}{l}{1+m≤1-e}\\{1-m≥-1}\end{array}\right.$,解得m≤-e.
综上,实数m的取值范围为(-∞,-e]∪[e,+∞﹚.
故选:A.

点评 本题考查考查了问题,训练了利用导数研究函数的最值,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的图象上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求证:{xn+1}是等比数列,并求出数列{xn}的通项公式;
(2)对任意的正整数n,当m∈[-1,1]时,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求实数t的取值范围;
(3)设四边形PnQnQn+1Pn+1的表面积是Sn,求证:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图直三棱柱ABC-A1B1C1 中AC=2AA1,AC⊥BC,D、E 分别为A1C1、AB 的中点.求证:
(1)AD⊥平面BCD
(2)A1E∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.五面体ABC-DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(Ⅰ)求证:G是DE中点;
(Ⅱ)求二面角A-CE-F的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知幂函数f(x)=${x^{-{m^2}-2m+3}}$(m∈Z)为偶函数,且在区间(-∞,0)上是单调减函数,则$f({\frac{1}{2}})$的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,△ABC在$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,M,N分是$\overrightarrow{CA}$,$\overrightarrow{CB}$上的点,且$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{CN}$=$\frac{1}{2}$$\overrightarrow{b}$,设$\overrightarrow{AN}$与$\overrightarrow{BM}$ 交于P,用向量$\overrightarrow{a}$,$\overrightarrow{b}$ 表示向量$\overrightarrow{CP}$,并求出AP:PN,BP:PM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校高一,高二,高三年级的学生人数分别是750,750,1000,现采用分层抽样的方法抽取一个容量为50的样本,则应从高二年级抽取15学生.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若存在两个正实数x,y使得等式3x+a(y-2ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.(-∞,0)B.(0,$\frac{3}{e}$]C.[$\frac{3}{e}$,+∞)D.(-∞,0)∪[$\frac{3}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+2xtanθ-1,x∈[-1,$\sqrt{3}$],其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)
(1)当θ=-$\frac{π}{6}$时,求函数的最大值和最小值;
(2)求θ的取值范围,使y=f(x)在区间[-1,$\sqrt{3}$]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).

查看答案和解析>>

同步练习册答案