精英家教网 > 高中数学 > 题目详情
11.某校高一,高二,高三年级的学生人数分别是750,750,1000,现采用分层抽样的方法抽取一个容量为50的样本,则应从高二年级抽取15学生.

分析 根据分层抽样原理,利用频数、频率与样本容量的关系求出即可.

解答 解:根据采用分层抽样方法,
样本容量为50时,应从高二年级抽取的人数为
50×$\frac{750}{750+750+1000}$=15.
故答案为:15.

点评 本题考查了分层抽样方法的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a=(2,1),\overrightarrow b=(-3,-4),\overrightarrow c⊥(\overrightarrow a-\overrightarrow b)$
(1)求$(2\overrightarrow a+3\overrightarrow b)•(\overrightarrow a-2\overrightarrow b)$;
(2)若向量$\overrightarrow c$为单位向量,求向量$\overrightarrow c$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四边形ABCD与BDEF均为边长为2的菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求点A到平面BDEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x-ex(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[-1,2],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立,则实数m的取值范围为(  )
A.(-∞,-e]∪[e,+∞﹚B.[-e,e]
C.﹙-∞,-2-$\frac{1}{e}$]∪[-2+$\frac{1}{e}$,+∞﹚D.[-2-$\frac{1}{e}$,-2+$\frac{1}{e}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0有四个实数根,则实数t的取值范围为(  )
A.(-∞,-e-$\frac{1}{e}$)B.(-∞,e+$\frac{1}{e}$)C.(-e-$\frac{1}{e}$,+∞)D.(-∞,-e-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有12.5斛.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3+bx2+cx+d,若函数f(x)的图象如图所示,则一定有(  )
A.b>0,c>0B.b<0,c>0C.b>0,c<0D.b<0,c<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4,0.5和0.7,则三次射击中恰有一次命中目标的概率是(  )
A.0.36B.0.64C.0.74D.0.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列求导运算错误的是(  )
A.(x2+4)′=2x+4B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(cosx)′=-sinxD.${({\frac{1}{x}})^′}=-\frac{1}{x^2}$

查看答案和解析>>

同步练习册答案