分析 (1)由已知分别证明FB∥ED,BC∥AD,再由面面平行的判定可得平面FBC/平面EAD,进一步得到FC∥平面EAD;
(2)设AC∩BD=O,则O为AC的中点,可得FO⊥AO,又AO⊥BD,由线面垂直的判定可得AO⊥平面BDEF,在菱形ABCD中,求解三角形得答案.
解答 证明:(1)∵BDEF是菱形,∴FB∥ED,![]()
又ED?平面EAD,FB?平面EAD,∴FB∥平面EAD,
∵ABCD是菱形,∴BC∥AD,
又AD?平面EAD,BC?平面EAD,∴BC∥平面EAD,
又FB∩BC=B,FB?平面EAD,BC?平面EAD,
∴平面FBC∥平面EAD,
又FC?平面FBC,∴FC∥平面EAD;
解:(2)设AC∩BD=O,则O为AC的中点,
∵FA=FC,∴FO⊥AO,
又AO⊥BD,FO∩BD=O,∴AO⊥平面BDEF,
在菱形ABCD中,
∵AB=2,∠DAB=60°,∴$AO=\sqrt{3}$,
故点A到平面BDEF的距离为$\sqrt{3}$.
点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了空间中点到面距离的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -1 | C. | -2 | D. | ±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com