精英家教网 > 高中数学 > 题目详情
16.若不等式|2x-3|<4与不等式x2+px+q<0的解集相同
( I)求实数p,q值;
( II)若正实数a、b、c满足a+b+c=2p-4q,求证:$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$.

分析 (I)求出不等式的解集,根据一元二次不等式与一元二次方程的关系得出p,q的值;
(II)利用分析法寻找不等式成立的充分条件,结合基本不等式的性质得出.

解答 解:(I)∵|2x-3|<4,-4<2x-3<4,解得-$\frac{1}{2}$<x<$\frac{7}{2}$,
∴x2+px+q=0的解为-$\frac{1}{2}$和$\frac{7}{2}$,
∴$\left\{\begin{array}{l}{-p=3}\\{q=-\frac{7}{4}}\end{array}\right.$,即p=-3,q=-$\frac{7}{4}$.
(II)证明:由(I)知a+b+c=2p-4q=1,
要证:$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$.
只需证:($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤3,即证a+b+c+2($\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ac}$)≤3,
∵a+b+c=1,
故只需证:$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ac}$≤1,
∵a,b,c均为正数,
∴$\sqrt{ab}$≤$\frac{a+b}{2}$,$\sqrt{bc}$≤$\frac{b+c}{2}$,$\sqrt{ac}$≤$\frac{a+c}{2}$,
∴$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ac}$≤$\frac{2(a+b+c)}{2}$=a+b+c=1,
∴$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$.

点评 本题考查了不等式的解法,不等式的证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,四边形ABCD与BDEF均为边长为2的菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求点A到平面BDEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3+bx2+cx+d,若函数f(x)的图象如图所示,则一定有(  )
A.b>0,c>0B.b<0,c>0C.b>0,c<0D.b<0,c<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4,0.5和0.7,则三次射击中恰有一次命中目标的概率是(  )
A.0.36B.0.64C.0.74D.0.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,且Sn=2n-an(n∈N*).
(1)求a1,a2,a3,a4的值,并猜想an的表达式;
(2)证明(1)中猜想的an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=cos(2x+φ)为R上的偶函数,则φ的值可以是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=($\frac{1}{2}$)|x|,x∈R,那么f(x)是(  )
A.奇函数且在(0,+∞)上是增函数B.偶函数且在(0,+∞)上是增函数
C.奇函数且在(0,+∞)上是减函数D.偶函数且在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列求导运算错误的是(  )
A.(x2+4)′=2x+4B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(cosx)′=-sinxD.${({\frac{1}{x}})^′}=-\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别是F1和F2,点A、B分别是椭圆的上、下顶点,四边形AF1BF2是正方形.
(1)求椭圆C的离心率;
(2)点$(\sqrt{2},\sqrt{3})$是椭圆C上一点.
①求椭圆C的方程;
②若动点P在直线y=-a2上(不在y轴上),直线PB与椭圆交于另一个点M.
证明:直线AM和直线AP的斜率之积为定值.

查看答案和解析>>

同步练习册答案