精英家教网 > 高中数学 > 题目详情
6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别是F1和F2,点A、B分别是椭圆的上、下顶点,四边形AF1BF2是正方形.
(1)求椭圆C的离心率;
(2)点$(\sqrt{2},\sqrt{3})$是椭圆C上一点.
①求椭圆C的方程;
②若动点P在直线y=-a2上(不在y轴上),直线PB与椭圆交于另一个点M.
证明:直线AM和直线AP的斜率之积为定值.

分析 (1)利用四边形AF1BF2是正方形是正方形,列出方程,然后求解离心率.
(2)①由(1)设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{{\frac{1}{2}{a^2}}}=1$,代入$(\sqrt{2},\sqrt{3})$,然后求出椭圆方程.
②设点P(x0,-8),其中x0≠0设M(x1,y1),A(0,2),B(0,-2),通过M,B,P三点共线∴$\frac{{{y_1}+2}}{x_1}=-\frac{6}{x_0}$,求出斜率,得到斜率乘积,化简推出结果即可.

解答 解:(1)四边形AF1BF2是正方形是正方形,∴$b=c=\frac{{\sqrt{2}}}{2}a$,∴$e=\frac{{\sqrt{2}}}{2}$…(4分)
(2)①由(1)设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{{\frac{1}{2}{a^2}}}=1$,代入$(\sqrt{2},\sqrt{3})$,得$C:\frac{2}{a^2}+\frac{6}{a^2}=1$,∴a2=8,
∴椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$.…(8分)
②设点P(x0,-8),其中x0≠0设M(x1,y1)A(0,2),B(0,-2),
∵M,B,P三点共线∴$\frac{{{y_1}+2}}{x_1}=-\frac{6}{x_0}$(*)
又${k_{AM}}=\frac{{{y_1}-2}}{x_1}\;\;\;\;\;{k_{AP}}=-\frac{10}{x_0}$,∴${k_{AM}}{k_{AP}}=\frac{{{y_1}-2}}{x_1}•\;(-\frac{10}{x_0})$,
由(*)可知∴${k_{AM}}{k_{AP}}=\frac{5}{3}\frac{{{y_1}^2-4}}{{{x_1}^2}}$(**),
∵M(x1,y1)在椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$上∴${y_1}^2=4(1-\frac{{{x_1}^2}}{8})$,
代入(**)得${k_{AM}}{k_{AP}}=-\frac{5}{6}$为定值.…(14分)

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若不等式|2x-3|<4与不等式x2+px+q<0的解集相同
( I)求实数p,q值;
( II)若正实数a、b、c满足a+b+c=2p-4q,求证:$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)判断函数f(x)=-x2+4x-2在区间[0,3]的单调性以及最大值和最小值;
(2)已知函数f(x)=$\frac{x}{x-1}$.
①求f(1+x)+f(1-x)的值;
②证明函数f(x)在(1,+∞)上是减函数(差分法).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{lnx}{x+a}+b-1$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(1)求a,b
(2)试比较20162017与20172016的大小,并说明理由.
(3)当c<1时,证明:对任意的x>0,有$\frac{(x+1)lnx}{x}-x+c-1<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{sinπx}{{({x^2}+1)({x^2}-2x+2)}}$,x∈R.
(Ⅰ)请判断方程f(x)=0在区间[-2017,2017]上的根的个数,并说明理由;
(Ⅱ)判断f(x)的图象是否具有对称轴,如果有请写出一个对称轴方程,若不具有对称性,请说明理由;
(Ⅲ)求证:$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B($\frac{π}{4}$,1),且当x∈$[{0,\frac{π}{4}}]$时,f(x)取得最大值2$\sqrt{2}$-1.
(1)求f(x)的解析式;
(2)是否存在向量$\overrightarrow m$,使得将f(x)的图象按向量$\overrightarrow m$平移后可以得到一个奇函数的图象?若存在,求出$|{\overrightarrow m}|$最小的$\overrightarrow m$;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设偶函数f(x)的定义域为R,f(2)=-3,对于任意的x≥0,都有f′(x)>2x,则不等式f(x)<x2-7的解集为(  )
A.(-2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设C是抛物线Γ:y=2x2上一点,以C为圆心且与Γ的准线相切的圆必过一个定点P,则点P的坐标是(0,$\frac{1}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ln(2-x)+ax在区间(0,1)内是增函数,则实数a的取值范围是[1,+∞).

查看答案和解析>>

同步练习册答案