分析 (1)根据f(1)=1-1=b-1,求出b的值,求出函数的导数,根据f′(1)=1,求出a的值即可;
(2)求出f(x)的解析式,求出函数的导数,得到函数的单调区间,从而判断大小即可;
(3)问题转化为只需证明$\frac{lnx}{x}$≤x-lnx,令g(x)=x-lnx,根据函数的单调性证明即可.
解答 解:(1)∵f(1)=1-1=0,
∴f(1)=b-1=0,故b=1,
f′(x)=$\frac{\frac{x+a}{x}-lnx}{{(x+a)}^{2}}$,∴f′(1)=1,
∴$\frac{1+a}{{(1+a)}^{2}}$=1,
∴a=0;
(2)由(1)f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)>0,解得:0<x<e,令f′(x)<0,解得:x>e,
故f(x)在(0,e)递增,在(e,+∞)递减,
∵2016<2017,$\frac{ln2016}{2016}$>$\frac{ln2017}{20′17}$,
∴20162017>20172016;
(3)要证$\frac{(x+1)lnx}{x}-x+c-1<0$,
即证lnx+$\frac{lnx}{x}$-x+c-1<0,
∵c<1,∴c-1<0,
故只需证明lnx+$\frac{lnx}{x}$-x≤0,
即只需证明$\frac{lnx}{x}$≤x-lnx,
令g(x)=x-lnx,
∵f(x)≤f(e)=$\frac{1}{e}$,g′(x)=$\frac{x-1}{x}$,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)≥g(1)=1,
∵1>$\frac{1}{e}$,∴f(x)≤g(x),
∴$\frac{(x+1)lnx}{x}-x+c-1<0$.
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0.36 | B. | 0.64 | C. | 0.74 | D. | 0.63 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x2+4)′=2x+4 | B. | ${({{{log}_2}x})^′}=\frac{1}{xln2}$ | C. | (cosx)′=-sinx | D. | ${({\frac{1}{x}})^′}=-\frac{1}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3 | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4×4=16 | B. | 9×4=36 | C. | 4×4×4=64 | D. | 9×4+7=43 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com