精英家教网 > 高中数学 > 题目详情
15.设C是抛物线Γ:y=2x2上一点,以C为圆心且与Γ的准线相切的圆必过一个定点P,则点P的坐标是(0,$\frac{1}{8}$).

分析 求出抛物线的焦点坐标,利用抛物线的定义推出结果即可.

解答 解:y=2x2,化为x2=$\frac{1}{2}$y,焦点坐标(0,$\frac{1}{8}$),
由抛物线的定义可知:以C为圆心且与Γ的准线相切的圆必过抛物线的焦点坐标,
所以则点P的坐标是(0,$\frac{1}{8}$).
故答案为:(0,$\frac{1}{8}$).

点评 本题考查抛物线的简单性质的应用,抛物线定义的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列求导运算错误的是(  )
A.(x2+4)′=2x+4B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(cosx)′=-sinxD.${({\frac{1}{x}})^′}=-\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别是F1和F2,点A、B分别是椭圆的上、下顶点,四边形AF1BF2是正方形.
(1)求椭圆C的离心率;
(2)点$(\sqrt{2},\sqrt{3})$是椭圆C上一点.
①求椭圆C的方程;
②若动点P在直线y=-a2上(不在y轴上),直线PB与椭圆交于另一个点M.
证明:直线AM和直线AP的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若方程x2+x+p=0有两个虚根α、β,且|α-β|=3,则实数p的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果函数$f(x)={log_3}\frac{3+x}{a-x}$是奇函数,则f(x)的定义域是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a、b、c.
(1)若a、b、c成等比数列,且$cosB=\frac{3}{5}$,求cotA+cotC的值;
(2)若A、B、C成等差数列,且b=2,求△ABC 的周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}中,前n项和为Sn,若a2+a8=10,则S9=(  )
A.36B.40C.42D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点A(4,a)和B(5,b)的直线与y=x+m平行,则|AB|的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式组$\left\{\begin{array}{l}x≥0\\ y≥2x\\ kx-y+1≥0\end{array}\right.$表示的平面区域是一个直角三角形,则该直角三角形的面积是(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{5}$或$\frac{1}{4}$

查看答案和解析>>

同步练习册答案