精英家教网 > 高中数学 > 题目详情
8.设f(x)=($\frac{1}{2}$)|x|,x∈R,那么f(x)是(  )
A.奇函数且在(0,+∞)上是增函数B.偶函数且在(0,+∞)上是增函数
C.奇函数且在(0,+∞)上是减函数D.偶函数且在(0,+∞)上是减函数

分析 根据题意,由f(x)的解析式计算可得f(-x)的解析式,分析f(x)与f(-x)的关系,可得f(x)为偶函数,进而分析可得在区间(0,+∞),f(x)的解析式,由指数函数的性质即可得函数f(x)的单调性,综合可得答案.

解答 解:根据题意,f(x)=($\frac{1}{2}$)|x|,x∈R,其定义域关于原点对称,
且f(-x)=($\frac{1}{2}$)|-x|=($\frac{1}{2}$)|x|=f(x),为偶函数,
又由f(x)=($\frac{1}{2}$)|x|,当x∈(0,+∞),有f(x)=($\frac{1}{2}$)x,为减函数.
故选:D.

点评 本题考查函数奇偶性与单调性的判定,分析单调性要将函数写成分段函数的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知幂函数f(x)=${x^{-{m^2}-2m+3}}$(m∈Z)为偶函数,且在区间(-∞,0)上是单调减函数,则$f({\frac{1}{2}})$的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}m{log_{2017}}x+3{x^3},x>0\\{log_{2017}}(-x)+n{x^3},x<0\end{array}\right.$为偶函数,则m-n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若不等式|2x-3|<4与不等式x2+px+q<0的解集相同
( I)求实数p,q值;
( II)若正实数a、b、c满足a+b+c=2p-4q,求证:$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10名作“夺冠之路”的励志报告.若每个大项中至少选派两人,则名额分配有几种情况?(  )
A.10种B.15种C.20种D.25种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+2xtanθ-1,x∈[-1,$\sqrt{3}$],其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)
(1)当θ=-$\frac{π}{6}$时,求函数的最大值和最小值;
(2)求θ的取值范围,使y=f(x)在区间[-1,$\sqrt{3}$]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$y=lg[{{x^2}+({k-3})x+\frac{9}{4}}]$的值域为R,则实数k的取值范围是(  )
A.(0,6)B.[0,6)C.(-∞,0]∪[6,+∞)D.(-∞,0)∪(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)判断函数f(x)=-x2+4x-2在区间[0,3]的单调性以及最大值和最小值;
(2)已知函数f(x)=$\frac{x}{x-1}$.
①求f(1+x)+f(1-x)的值;
②证明函数f(x)在(1,+∞)上是减函数(差分法).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设偶函数f(x)的定义域为R,f(2)=-3,对于任意的x≥0,都有f′(x)>2x,则不等式f(x)<x2-7的解集为(  )
A.(-2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

同步练习册答案