精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0有四个实数根,则实数t的取值范围为(  )
A.(-∞,-e-$\frac{1}{e}$)B.(-∞,e+$\frac{1}{e}$)C.(-e-$\frac{1}{e}$,+∞)D.(-∞,-e-1)

分析 判断f(x)的单调性,根据函数图形得出f(x)=m的解得分布情况,得出关于m的方程m2+tm+1=0的根的分布情况,列不等式解出t.

解答 解:当x≥0时,f(x)=xex,f′(x)=ex+xex=ex(x+1)>0,
∴f(x)在[0,+∞)上单调递增,
当x<0时,f(x)=-xex,f′(x)=-ex(x+1),
∴当x<-1时,f′(x)>0,当-1<x<0时,f′(x)<0,
∴f(x)在(-∞,-1)上单调递增,在(-1,0)上单调递减,
f(x)的极大值为f(-1)=$\frac{1}{e}$,
作出f(x)的函数图象如图所示:

设f(x)=m,由图象可知:
∴当m=0或m$>\frac{1}{e}$时,方程f(x)=m有1解;
当0<m<$\frac{1}{e}$时,方程f(x)=m有3解;
当m=$\frac{1}{e}$时,方程f(x)=m有2解.
∵方程f2(x)+tf(x)+1=0有四个实数根,
显然f(x)≠0,
∴关于m的方程m2+mt+1=0在(0,$\frac{1}{e}$)和($\frac{1}{e}$,+∞)上各有1解;
∴$\frac{1}{{e}^{2}}$+$\frac{t}{e}$+1<0,
解得t<-e-$\frac{1}{e}$.
故选A.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{4,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是(  )
A.(-2,1)B.(1,2)C.[-2,1]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{e_1},\overrightarrow{e_2}$是不共线的向量,$\overrightarrow a=\overrightarrow{e_1}+k\overrightarrow{e_2}$,$\overrightarrow b=k\overrightarrow{e_1}+\overrightarrow{e_2}$,若$\overrightarrow a$与$\overrightarrow b$共线,则实数k为(  )
A.0B.-1C.-2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知幂函数f(x)=${x^{-{m^2}-2m+3}}$(m∈Z)为偶函数,且在区间(-∞,0)上是单调减函数,则$f({\frac{1}{2}})$的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}、{bn}满足${b_n}={log_2}{a_n},n∈{N^*}$,其中{bn}是等差数列,且a9a2009=4,则b1+b2+b3+…+b2017=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校高一,高二,高三年级的学生人数分别是750,750,1000,现采用分层抽样的方法抽取一个容量为50的样本,则应从高二年级抽取15学生.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{e^x}{x+1}$.
(1)求f(x)在(1,f(1))处的切线方程;
(2)若关于x的不等式(x+1)f(x)≥$\frac{1}{2}{x^2}$+x+a在[0,+∞)上恒成立,求实数a的取值范围;
(3)设函数g(x)=$\frac{(x-1)(x+m)}{lnx}$,其定义域是D,若关于x的不等式(x+1)f(x)<g(x)在D上有解,求整数m的最小值.(参考数据:$\sqrt{e}$=1.65,ln2=0.69)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}m{log_{2017}}x+3{x^3},x>0\\{log_{2017}}(-x)+n{x^3},x<0\end{array}\right.$为偶函数,则m-n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$y=lg[{{x^2}+({k-3})x+\frac{9}{4}}]$的值域为R,则实数k的取值范围是(  )
A.(0,6)B.[0,6)C.(-∞,0]∪[6,+∞)D.(-∞,0)∪(6,+∞)

查看答案和解析>>

同步练习册答案