精英家教网 > 高中数学 > 题目详情

【题目】某研究性学习小组为了解学生每周用于体育锻炼时间的情况,在甲、乙两所学校随机抽取了各50名学生,做问卷调查,并作出如下频率分布直方图:

(1)根据直方图计算:两所学校被抽取到的学生每周用于体育锻炼时间的平均数;
(2)在这100名学生中,要从每周用于体育锻炼时间不低于10小时的学生中选出3人,该3人中来自乙学校的学生数记为X,求X的分布列和数学期望.

【答案】
(1)解:由频率分布直方图得甲校被抽取到的学生每周用于体育锻炼时间的平均数为:

=0.12×5.5+0.24×6.5+0.32×7.5+0.20×8.5+0.08×9.5+0.04×10.5=7.5.

乙校被抽取到的学生每周用于体育锻炼时间的平均数为:

=0.08×5.5+0.24×6.5+0.28×7.5+0.24×8.5+0.08×9.5+0.08×10.5=7.74.


(2)解:每周体育锻炼时间不低于10个小时的学生中,甲校有2人,乙校有4人,

X的所有可能取值有1,2,3,

P(X=1)= =

P(X=2)= =

P(X=3)= =

∴X的分布列为:

X

1

2

3

P

EX=


【解析】(1)由频率分布直方图能求出两所学校被抽取到的学生每周用于体育锻炼时间的平均数.(2)每周体育锻炼时间不低于10个小时的学生中,甲校有2人,乙校有4人,X的所有可能取值有1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.
【考点精析】掌握频率分布直方图和离散型随机变量及其分布列是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的值域为[0,+∞),求实数a的取值范围;

(2)若关于x的不等式Fx)>afx)+12恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数fx),当x≥0时,fx)=,则关于x的函数Fx)=fx)-a(0<a<1,a为常数)的所有零点之和为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分7分)选修4-4:坐标系与参数方程

在平面直角坐标中,直线的参数方程为为参数),PQ分别为直线与x轴、y轴的交点,线段PQ的中点为M.

)求直线的直角坐标方程;

)以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两直线,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:

1

2

3

4

5

58

54

39

29

10

(1)在答题纸的坐标系中,描出散点图,并判断变量是正相关还是负相关;

(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值,完成以下表格(填在答题卡中),求出的回归方程.( 保留两位有效数字):

1

4

9

16

25

58

54

39

29

10

(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)(附:对于一组数据 ,……, ,其回归直线的斜率和截距的最小二乘法估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家规定个人稿费缴纳方法为:不超过800元的不纳税,超过800元而不超过4000元的按超过800元部分的14%纳税,超过4000元的按全部稿酬的11.2%纳税(本题中稿费均指纳税前稿费).

(Ⅰ)某人出了一本书,获得30000元的个人稿费,则这个人需要纳税是多少元?

(Ⅱ)试建立某人所得稿费x元与纳税额y元的函数关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形ABCD中,ADBCABC =BAD =AB=BC=2AD=4EF分别是ABCD上的点,EFBCAE = GBC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以FBCD为顶点的三棱锥的体积记为,求的最大值;

2)当 取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

同步练习册答案