精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为(  )

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分15分)如图,在四棱锥中,底面是矩形,平面与平面所成角的正切值依次是依次是的中点.
(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求证:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如图,四棱锥P—ABCD的底面是AB=2,BC=的矩形,侧面PAB
是等边三角形,且侧面PAB⊥底面ABCD
(I)证明:侧面PAB⊥侧面PBC;
(II)求侧棱PC与底面ABCD所成的角;
(III)求直线AB与平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,三棱柱的各棱长均为2,侧棱与底面所成的角为为锐角,且侧面⊥底面,给出下列四个结论:



③直线与平面所成的角为
.
其中正确的结论是( )

A.①③ B.②④ C.①③④ D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在正方体中,点E为的中点,则平面与平面ABCD所成的锐二面角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,分别为的中点,四边形是边长为的正方形.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )

A.(,,) B.(,,)
C.(,,) D.(,,)

查看答案和解析>>

同步练习册答案