精英家教网 > 高中数学 > 题目详情
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.
(1)0.3 0.2 0.1 (2)(ⅰ) (ⅱ)

试题分析:(1)由频率分布直方图的横坐标得到组距,纵坐标得到每组的频率/组距,故而每组的频率即为纵坐标与组距的乘积.
(2)分层抽样就是在保持每个个体入样的可能性相等的条件下把样本容量分摊到每一层,即样本容量与总体数量之比与某层抽样个数与该层总数之比相等,进而得到每层抽样的人数
(i)第三组要抽样3人,在30人中抽样三人,无序即为组合数,即中抽样情况,根据题目要求“学生甲和学生乙恰有一人进入第二轮面试”的事件分为两种情况①甲乙中只有甲入选,即还需要在28人中无序抽样2人,即,②甲乙中只有乙入选,即还需要在28人中无序抽样2人,即.在利用古典概型概率计算公式即可得到相应的概率
(ii)由分层抽样的结果可知6人中有两人是第四组的,即,再利用组合数算得从6人中无序抽样两人的情况数和分别有0,1,2人是第四组的情况数,即可得到相应的概率,进而得到分布列,在把三种情况的概率与其分别相乘再相加即可得到期望.
试题解析:(1)  第三组的频率为0.065="0.3;" 第四组的频率为0.045=0.2;第五组的频率为0.025=0.1.                                 3分
(2)(ⅰ)设“学生甲和学生乙恰有一人进入第二轮面试”为事件A,第三组应有3人进入面试则:  P(A)= =                                                6分
(ⅱ)第四组应有2人进入面试,则随机变量可能的取值为0,1,2.             7分
,则随机变量的分布列为:

0
1
2
P



 
12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.
(1)求乙、丙两人各自被聘用的概率;
(2)设为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求的分布列与均值(数学期望).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有大小、质地均相同的4个红球与2个白球.若从中有放回地依次取出一个球,记6次取球中取出红球的次数为ξ,则ξ的期望E(ξ)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某电器商经过多年的经验发现本店每个月售出的电冰箱的台数ξ是一个随机变量,它的分布列为P(ξ=i)=(i=1,2,…,12);设每售出一台电冰箱,电器商获利300元.如销售不出,则每台每月需花保管费100元.问电器商每月初购进多少台电冰箱才能使月平均收益最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、p2.
(1)求学生甲不能通过A高校自主招生考试的概率;
(2)设X为学生甲在三道程序中获优的次数,求X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费X(随机变量)的分布列;
(2)试比较哪一种方案好.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;
(Ⅱ)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有大小相同的三个球,编号分别为1,2,2,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用X表示所有被取到的球的编号之和,则X的方差为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某个不透明的袋中装有除颜色外其它特征完全相同的8个乒乓球(其中3个是白色球,5个是黄色球),小李同学从袋中一个一个地摸乒乓球(每次摸出球后不放回),当摸到的球是黄球时停止摸球.用随机变量表示小李同学首先摸到黄色乒乓球时的摸球次数,则随机变量的数学期望值   

查看答案和解析>>

同步练习册答案