精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinx-sin(x-
π
3

(Ⅰ)求f(
π
6
);
(Ⅱ)求f(x)在[-
π
2
π
2
]上的取值范围.
考点:两角和与差的正弦函数,三角函数中的恒等变换应用
专题:三角函数的求值
分析:(Ⅰ)根据函数f(x)的解析式,直接求得 f(
π
6
)=sin
π
6
-sin(
π
6
-
π
3
)
的值.
(Ⅱ)化简函数的解析式为f(x)=sin(x+
π
3
)
,根据-
π
2
≤x≤
π
2
,利用正弦函数的定义域和值域求得f(x)的取值范围.
解答: 解:(Ⅰ)由题意可得 f(
π
6
)=sin
π
6
-sin(
π
6
-
π
3
)
=sin
π
6
-sin(-
π
6
)
=sin
π
6
+sin
π
6
=2sin
π
6
=1

(Ⅱ)∵f(x)=sinx-
1
2
sinx+
3
2
cosx
=
1
2
sinx+
3
2
cosx
=sin(x+
π
3
)

-
π
2
≤x≤
π
2
,∴-
π
6
≤x+
π
3
6
-
1
2
≤sin(x+
π
3
)≤1

所以,f(x)的取值范围是[-
1
2
,1]
点评:本题主要考查三角函数的恒等变换,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面内,复数
i
1+i
的共轭复数对应的点在第(  )象限.
A、一B、二C、三D、四

查看答案和解析>>

科目:高中数学 来源: 题型:

下列方程所表示的曲线中,关于x轴和y轴都对称的是(  )
A、x2-y2=1
B、y2=x
C、(x-1)2+y2=1
D、x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

由a1=1,an+1=
an
3an+1
给出的数列{an}的第33项是(  )
A、
1
97
B、
34
103
C、
1
100
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

绵阳市农科所研究出一种新的棉花品种,为监测长势状况.从甲、乙两块试验田中各抽取了10株棉花苗,量出它们的株高如下(单位:厘米):
37 21 31 20 29 19 32 23 25 33
10 30 47 27 46 14 26 10 44 46
(Ⅰ)画出两组数据的茎叶图,并根据茎叶图对甲、乙两块试验田中棉花棉的株高进行比较,写出两个统计结论;
(Ⅱ)从甲、乙两块试验田的棉花苗株高在[23,29]中抽3株,求至少各有1株分别属于甲、乙两块试验田的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,ADCD,且AD=CD=2
2
,BC=4
2
,PA=2,点M在线段PD上.
(1)求证:AB⊥PC.
(2)若二面角M-AC-D的大小为45°,求BM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某竞赛有A1,A2,B三类题目共10道,其中A1,A2类为难度相同的简单题各3道,B类为中档题共4道,参加比赛的选手从这10道题目中随机抽取3道题作答.
(1)求某选手所抽取的3道题中至少有1道B类题的概率;
(2)某选手所抽取的3道题中有X道A1,A2类题,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图三棱柱ABC-A1B1C1中,侧棱与底面垂直,△ABC是等边三角形,点D是BC的中点.
(Ⅰ)证明:A1B∥平面C1AD;
(Ⅱ)若在三棱柱ABC-A1B1C1内部(含表面)随机投放一个点P,求点P落在三棱锥C1-A1AD内部(含表面)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次数学测验后,班级学委王明对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲 坐标系与参数方程 不等式选讲 合计
男同学 12 4 6 22
女同学 0 8 12 20
合计 12 12 18 42
(Ⅰ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)
几何类 代数类 总计
男同学 16 6 22
女同学 8 12 20
总计 24 18 42
据此判断是否有95%的把握认为选做“几何类”或“代数类”与性别有关?
(Ⅱ)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学委王明和两名数学科代表三人都在选做《不等式选讲》的同学中.
①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步练习册答案