精英家教网 > 高中数学 > 题目详情
如图四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,ADCD,且AD=CD=2
2
,BC=4
2
,PA=2,点M在线段PD上.
(1)求证:AB⊥PC.
(2)若二面角M-AC-D的大小为45°,求BM与平面PAC所成的角的正弦值.
考点:与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角
分析:(1)设E为BC的中点,连接AE,证明AB⊥PC,只需证明AB⊥平面PAC,只需证明AB⊥AC,AB⊥PA.
(2)设AC∩BD=O,连接OP,过点M作MN⊥AD,过点N作NG⊥AC于G,连接MG,证明∠MGN是二面角M-AC-D的平面角,即∠MGN=45°,M为PD的中点,连接PO交BM于H,连接AH,证明∠BHA是BM与平面PAC所成的角,即可求BM与平面PAC所成的角的正弦值.
解答: (1)证明:设E为BC的中点,连接AE,则AD=EC,AD∥EC,
∴四边形AECD为平行四边形,
∴AE⊥BC
∵AE=BE=EC=2
2

∴∠ABC=∠ACB=45°,
∴AB⊥AC,
∵PA⊥平面ABCD,AB?平面ABCD,
∴AB⊥PA
∵AC∩PA=A,
∴AB⊥平面PAC,
∴AB⊥PC.
(2)设AC∩BD=O,连接OP,过点M作MN⊥AD,过点N作NG⊥AC于G,连接MG,则MN∥PA,
由PA⊥平面ABCD,可得MN⊥平面ABCD,
∴MN⊥AC,
∵NG⊥AC,MN∩NG=N,
∴AC⊥平面MNG,
∴AC⊥MG,
∴∠MGN是二面角M-AC-D的平面角,即∠MGN=45°
设MN=x,则NG=AG=x,∴AN=ND=
2
x,
可得M为PD的中点,连接PO交BM于H,连接AH,
由(1)AB⊥平面PAC,∴∠BHA是BM与平面PAC所成的角
在△ABM中,AB=4,AM=
1
2
PD=
3
,BM=3
3

∴cos∠ABM=
5
3
9

∵∠BHA与∠ABM互余,
∴BM与平面PAC所成的角的正弦值为
5
3
9
点评:本题考查线面垂直,线线垂直,考查面面角,考查线面角,考查学生分析解决问题的能力,正确作出线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆(x-1)2+(y+3)2=2的圆心和半径分别为(  )
A、(-1,3),2
B、(1,-3),
2
C、(1,-3),2
D、(-1,3),
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则x+y的值为(  )
A、9B、10C、11D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
2
3
,中奖可以获得2分;方案乙的中奖率为P0(0<P0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为
7
9
,求P0
(Ⅱ)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-sin(x-
π
3

(Ⅰ)求f(
π
6
);
(Ⅱ)求f(x)在[-
π
2
π
2
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(cosx)=cos17x,求证:f(sinx)=sin17x.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形OABC的顶点O在坐标原点,其中点A(-3,4),AB边与y轴交与点D.
(1)求直线AB解析式;
(2)求△AOD的面积及其外接圆的面积;
(3)问△AOD的外接圆与BC所在的直线是否相切?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各1000只,给每只鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机的捕出1000只鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据做成以下的茎叶图(图1).

(Ⅰ)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(Ⅱ)为了估计池塘中鱼的总重量,现从中按照(Ⅰ)的比例对100条鱼进行称重,据称重鱼的重量介于(0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5)、第二组[0.5,1);…,第九组[4,4.5).图2是按上述分组方法得到的频率分布直方图的一部分.
①估计池塘中鱼的重量在3千克以上(含3千克)的条数;
②若第二组、第三组、第四组鱼的条数依次成公差为7的等差数列,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数、中位数及估计池塘中鱼的总重量;
(Ⅲ)假设随机地从池塘逐只有放回的捕出5只鱼中出现鲤鱼的次数为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+mx,其中m为常数.
(Ⅰ)当m=-1时,求函数f(x)的单调区间;
(Ⅱ)若f(x)在区间(0,e]上的最大值为-3,求m的值;
(Ⅲ)令g(x)=
f(x)+2
x
-f′(x),若x≥1时,有不等式g(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案