分析 先化简所给的式子为:(1+2x-3x2)5=-(x-1)5(3x+1)5 ,再分别利用二项式定理的展开,展开式中x5的系数.
解答 解:∵(1+2x-3x2)5 =-(x-1)5(3x+1)5
=-(${C}_{5}^{0}$•x5-${C}_{5}^{1}$•x4+${C}_{5}^{2}$•x3-${C}_{5}^{3}$•x2+${C}_{5}^{4}$•x-${C}_{5}^{5}$)•[${C}_{5}^{0}$•(3x)5+${C}_{5}^{1}$•(3x)4+${C}_{5}^{2}$•(3x)3+${C}_{5}^{3}$•(3x)2+${C}_{5}^{4}$•(3x)+${C}_{5}^{5}$]
故(1+2x-3x2)5展开式里x5的系数为:-[${C}_{5}^{0}$•${C}_{5}^{5}$-${C}_{5}^{1}$•3${C}_{5}^{4}$+${C}_{5}^{2}$•9${C}_{5}^{3}$-${C}_{5}^{3}$•27${C}_{5}^{2}$+${C}_{5}^{4}$•81${C}_{5}^{1}$-${C}_{5}^{5}$•243${C}_{5}^{0}$]=92.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com