分析 由CB1∥EF1,得∠AEF1是异面直线AE与CB1所成角,由此能求出直线AE与CB1所成角的余弦值.
解答
解:∵CB1∥EF1,∴∠AEF1是异面直线AE与CB1所成角,
设AB=1,则AF1=EF1=$\sqrt{2}$,
AE2=1+1-2×1×1×cos120°=3,即AE=$\sqrt{3}$,
∴cos∠AEF1=$\frac{A{E}^{2}+E{{F}_{1}}^{2}-A{{F}_{1}}^{2}}{2AE•E{F}_{1}}$=$\frac{3+2-2}{2×\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
∴直线AE与CB1所成角的余弦值为$\frac{\sqrt{6}}{4}$.
故答案为:$\frac{\sqrt{6}}{4}$.
点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意余弦定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com