精英家教网 > 高中数学 > 题目详情
17.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,侧棱垂直于底面,且侧棱长等于底面边长,则直线AE与CB1所成角的余弦值为$\frac{\sqrt{6}}{4}$.

分析 由CB1∥EF1,得∠AEF1是异面直线AE与CB1所成角,由此能求出直线AE与CB1所成角的余弦值.

解答 解:∵CB1∥EF1,∴∠AEF1是异面直线AE与CB1所成角,
设AB=1,则AF1=EF1=$\sqrt{2}$,
AE2=1+1-2×1×1×cos120°=3,即AE=$\sqrt{3}$,
∴cos∠AEF1=$\frac{A{E}^{2}+E{{F}_{1}}^{2}-A{{F}_{1}}^{2}}{2AE•E{F}_{1}}$=$\frac{3+2-2}{2×\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
∴直线AE与CB1所成角的余弦值为$\frac{\sqrt{6}}{4}$.
故答案为:$\frac{\sqrt{6}}{4}$.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.完成某项工作需4个步骤,每一步方法数相等,完成这项工作共有81种方法,改革后完成这项工作减少了一个步骤,改革后完成这项工作有27种方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mx+3,g(x)=x2+2x+m.
(I)解不等式f(x)≥g(x);
(Ⅱ)若不等式f(x)+g(x)≥0对任意的x∈(-1,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求(1+2x-3x25展开式中x5的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知递增的等差数列{an}的前n项和为Sn,a2,a4,a8成等比数列,且Sn-5an的最小值为-20.
(I)求an
(Ⅱ)设bn=a1n+$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,A,B,C成等差数列,a2=b2+c2-$\sqrt{3}$bc,又a,b,c+4成等比数列.
(1)求A,B,C.
(2)求a,b,c
(3)求△ABC的面积S以及△ABC的外接圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的上顶点A作斜率分别为k1,k2(k1,k2>0,k1≠k2)的两条直线l1,l2,它们分别与椭圆交于另一点M,N.
(1)当k1,k2满足什么条件时,直线MN垂直于x轴;
(2)当k1k2=1时,求直线MN的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.二项式($\frac{2}{x}$+x3n的展开式中,第4项的二项式系数是第3项的二项式系数的2倍.
(Ⅰ)求n的值,并求所有项的二项式系数的和;
(Ⅱ)求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(x,4),则x=-2是$\overrightarrow{a}$∥$\overrightarrow{b}$的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案