精英家教网 > 高中数学 > 题目详情
6.二项式($\frac{2}{x}$+x3n的展开式中,第4项的二项式系数是第3项的二项式系数的2倍.
(Ⅰ)求n的值,并求所有项的二项式系数的和;
(Ⅱ)求展开式中的常数项.

分析 (Ⅰ)由题意利用二项式系数的性质,求得n的值.
(Ⅱ)在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.

解答 解:(Ⅰ)由题意可得${C}_{n}^{3}$=2${C}_{n}^{2}$,∴n=8,故所有项的二项式系数的和为28=256.
(Ⅱ)由题意可得通项公式为Tr+1=${C}_{8}^{r}$•28-r•x4r-8,令4r-8=0,求得r=2,
可得展开式中的常数项为${C}_{8}^{2}$•26=1792.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数y=cos2x-sin2x+sin2x的周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,侧棱垂直于底面,且侧棱长等于底面边长,则直线AE与CB1所成角的余弦值为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{1+{a}_{n}}$,n∈N
(I)求证:数列{$\frac{1}{{a}_{n}}$-1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{n}{{a}_{n}}$,(n∈N),设数列{bn}的前n项和为Sn,求证:当n≥3时,Sn>$\frac{{n}^{2}}{2}$+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈($\frac{π}{2}$,π),则化简$\frac{si{n}^{2}α}{1-cosα}$+$\sqrt{1-si{n}^{2}α}$等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,四棱锥P-ABCD的底面ABCD是菱形,侧棱PD⊥底面ABCD,∠BCD=60°.
(1)若点F,E分别在线段AP,BC上,AF=2FP,BE=2EC,求证:EF∥平面PDC;
(Ⅱ)问在线段AB上,是否存在点Q,使得平面PAB⊥平面PDQ,若存在,求出点Q的位置;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量:$\overrightarrow{a}$=(k,-2),$\overrightarrow{b}$=(1,4).$\overrightarrow{c}$=(2,1).
(Ⅰ)计算|2$\overrightarrow{b}$-5$\overrightarrow{c}$|的值;
(II)若(2$\overrightarrow{a}$-3$\overrightarrow{b}$)⊥$\overrightarrow{c}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米,现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.
(1)若甲、乙两管理员到达D的时间相差不超过15分钟.求乙的速度v的取值范围;
(2)已知对讲机有效通话的最大距离是5千米,若乙先到达D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话.求乙的速度v的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定点P(3,1),双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的左、右焦点分别为F1、F2,若点A在双曲线上,则|AP|+|AF2|的最小值为$\sqrt{37}$-2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案