已知椭圆C:
+
=1的左、右焦点分别为F1,F2,椭圆C上点A满足AF2⊥F1F2.若点P是椭圆C上的动点,则
·
的最大值为( )
A.
B.![]()
C.
D.![]()
科目:高中数学 来源: 题型:
过点Q(-2,
)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.
(1)求r的值;
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设
,求|
|的最小值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
.已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆的方程;
(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
设椭圆E:
=1的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程.
(2)设F1,F2分别是椭圆的左、右焦点,P为椭圆E上的第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com