精英家教网 > 高中数学 > 题目详情
下列说法错误的是(  )
A、平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行
B、一个平面内的两条相交直线与另外一个平面平行,则这两个平面平行
C、一条直线与一个平面内的两条直线都垂直,则该直线与此平面垂直
D、如果两个平行平面同时和第三个平面相交,则它们的交线平行
考点:命题的真假判断与应用,空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系
专题:空间位置关系与距离,简易逻辑
分析:利用直线与平面平行的判定定理判断A的正误;利用平面与平面平行的判定定理判断B的正误;利用直线与平面垂直的判定定理判断C的正误;利用平面与平面平行的性质定理判断D的正误;
解答: 解:对于A,满足直线与平面平行的判定定理,∴A正确;
对于B,满足平面与平面平行的判定定理,∴B正确;
对于C,不满足直线与平面垂直的判定定理,∴C不正确;
对于D,满足两个平面平行的性质定理,∴D正确;
故选:C.
点评:本题考查直线与平面、平面与平面平行与垂直的判定与性质定理的应用,基本知识的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=ax3,(a≠0)有以下说法:
①x=0是f(x)的极值点.
②当a<0时,f(x)在(-∞,+∞)上是减函数.
③若a>0且x≠0则f(x)+f(
1
x
)
有最小值是2a.
④f(x)的图象与(1,f(1))处的切线必相交于另一点.
其中说法正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个选项中,说法错误的是(  )
A、若A是B的必要不充分条件,则非B也是非A的必要不充分条件
B、“
a>0
△=b2-4ac≤0
”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件
C、“x≠1”是“x2≠1”的充分不必要条件
D、“x≠0”是“x+|x|>0”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

学校为了了解学生每天课外阅读的时问(单位:分钟),抽取了n个学生进行调查,结果显示这些学生的课外阅读时间都在[10,50),其频率分布直方图如图所示,其中时间在[30,50)的学生有67人,则n的值是(  )
A、100B、120
C、130D、390

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x<0},B={x||x-2|<1},则“a∈A”是“a∈B”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

画出一个计算“1-3+5-7+…+2011-2013”的值的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)左焦点F1(-c,0)作倾斜角为30°的直线L交双曲线右支于点P,线段PF1的中点在y轴上,双曲线右焦点F2(c,0)到双曲线的渐近线的距离是2.
(Ⅰ)求双曲线的方程;   
(Ⅱ)设以F1F2为直径的圆与直线L交于点Q,过右焦点F2和点Q的直线L′与双曲线交于A、B两点,求弦|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C的两个焦点分别为F1(-1,0)、F2(1,0),且F2到直线x-
3
y-9=0的距离等于椭圆的短轴长.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P的圆心为P(0,t)(t>0),且经过F1、F2,Q是椭圆C上的动点且在圆P外,过Q作圆P的切线,切点为M,当|QM|的最大值为
3
2
2
时,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xe-2x(x∈R).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若函数y=h(x)的图象与函数y=f(x)的图象关于直线x=
1
2
对称.求证:当x>
1
2
时,f(x)>h(x).
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>1.

查看答案和解析>>

同步练习册答案