分析 若曲线f(x)=acosx与曲线g(x)=x2+bx+2在交点(0,n)处有公切线,则切点的坐标相等且切线的斜率(切点处的导函数值)均相等,由此构造关于a,b的方程,解方程可得答案.
解答 解:∵f(x)=acosx,g(x)=x2+bx+2,
∴f′(x)=-asinx,g′(x)=2x+b,
∵曲线f(x)=acosx与曲线g(x)=x2+bx+2在交点(0,n)处有公切线,
∴f(0)=a=g(0)=2且f′(0)=0=g′(x)=b,
即a=2,b=0,
∴a+b=2,
故答案为:2.
点评 本题考查的知识点是利用导数研究曲线上某点的切线方程,其中根据已知分析出f(0)=g(0)且f′(0)=g′(0)是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | (0,4] | B. | [0,4] | C. | (-∞,0)∪[4,+∞) | D. | (-∞,0)∪(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$ | B. | $[-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2}]$ | C. | $[-\sqrt{2},-\frac{{\sqrt{6}}}{2}]∪[\frac{{\sqrt{6}}}{2},\sqrt{2}]$ | D. | $[\frac{{\sqrt{6}}}{2},\sqrt{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com