精英家教网 > 高中数学 > 题目详情
19.如图,AC是圆O的直径,点 B在圆 O上,∠B AC=30°,B M⊥AC交 AC于点 M,E A⊥平面 A BC,FC∥E A,AC=4,E A=3,FC=1.
(1)证明:E M⊥BF;  
(2)求三棱锥 E-BMF的体积.

分析 (1)由EA⊥平面ABC,可得EA⊥BM,又BM⊥AC,由线面垂直的判定得BM⊥平面ACFE,则BM⊥EM.再由AC是圆O的直径得∠ABC=90°.然后求解直角三角形可得EM⊥MF.从而得到EM⊥平面MBF,则有EM⊥BF;
(2)由(1)可知BM⊥平面MFE,且$BM=\sqrt{3}$,而VE-BMF=VB-MEF,利用等积法求得三棱锥 E-BMF的体积.

解答 (1)证明:∵EA⊥平面ABC,BM?平面ABC,∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM?平面ACFE,∴BM⊥EM.
∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴$AB=2\sqrt{3}$,BC=2,AM=3,CM=1.
∵EA⊥平面ABC,FC∥EA,FC=1,∴FC⊥平面ABCD.
∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°,则∠EMF=90°,即EM⊥MF.
∵MF∩BM=M,∴EM⊥平面MBF,
而BF?平面MBF,∴EM⊥BF;
(2)解:由(1)可知BM⊥平面MFE,且$BM=\sqrt{3}$,而VE-BMF=VB-MEF
又由(1)可知,AE=AM=3,∴∠AME=45°,FC=CM=1,
∴∠CMF=45°,则∠EMF=90°,
则$ME=3\sqrt{2}$,$MF=\sqrt{2}$,
∴${S_{△MEF}}=\frac{1}{2}×3\sqrt{2}×\sqrt{2}=3$,
∴${V_{E-BMF}}=\frac{1}{3}×3×\sqrt{3}=\sqrt{3}$.

点评 本题考查空间中直线与直线的位置关系,考查了线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-ax,x∈R
(1)若a=2,求曲线f(x)在点(0,f(0))处的切线方程;
(2)当a>1时,求函数f(x)在[0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0),直线l与抛物线交于两点A、B,若OA⊥OB.
(Ⅰ)求证:直线l过定点;
(Ⅱ)若p=2时,求弦AB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,已知三视图中每个正方形边长为1,则此三视图所对应几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的函数f(x)满足y=f(x-3)的图象关于(3,0)中心对称,当-1≤x≤0时,f(x)=-x(1+x),则当0≤x≤1时,f(x)=-x(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,a16+a17+a18=a9=-36,其前n项和为Sn
(1)求Sn的最小值,并求出取Sn的最小值时n的值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,复数z满足z(1-i)=1+i,则|z|=(  )
A.0B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l:y=x与双曲线$\frac{x^2}{2}$-$\frac{y^2}{4}$=1相交,则交点坐标是(  )
A.(2,2)B.(2,2)或(-2,-2)C.(-2,-2)D.(2,2)或(2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对任意的x∈(0,+∞),不等式(x-a+ln$\frac{x}{a}$)(-2x2+ax+10)≤0恒成立,则实数a的取值范围是a=$\sqrt{10}$.

查看答案和解析>>

同步练习册答案