精英家教网 > 高中数学 > 题目详情
19.设m、n是二条不同的直线,α、β是二个不同的平面,说法正确的是(  )
A.若m∥n,n∥α,则m∥αB.若m∥β,n∥β,则m∥n
C.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,则m⊥β

分析 根据线面位置关系的判定与性质进行判断或举反例说明.

解答 解:对于A,当m?α时,显然结论错误,故A错误;
对于B,若m∥β,n∥β,则直线m,n可能平行,可能相交也可能异面,故B错误;
对于C,若m⊥β,n⊥β,则m∥n,又n⊥α,故m⊥α,故C正确;
对于D,若m⊥n,n⊥β,则m?β或m∥β,故D错误.

点评 本题考查了空间线面位置关系的判断与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1的值域[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x)的导函数f′(x),且满足f(x)+f′(x)<-2,f(1)=2,则不等式exf(x)>4e-2ex(其中e为自然对数的底数)的解集为(  )
A.(-∞,1)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设随机变量ξ服从正态分布N(2,4)若P(ξ<a-3)=p(ξ>2a+1),则实数a的值是(  )
A.-4B.$\frac{4}{3}$C.2D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(θ)=$\sqrt{3}$sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),则f(θ)=(  )
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(2,x-3),$\overrightarrow{b}$=(x,2),则“x=-1”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果直线FB恰好与圆x2+y2=a2相切,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,A,B,C所对应的边分别为a,b,c,且边BC上的高为$\frac{a}{4}$,则$\frac{b}{c}+\frac{c}{b}$的取值范围为[2,$2\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=(2+3i)i的实部与虚部之和为(  )
A.1B.-1C.5D.-5

查看答案和解析>>

同步练习册答案